Approximation Properties of Fourier Series of Sobolev Orthogonal Polynomials with Jacobi Weight and Discrete Masses
Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 611-629

Voir la notice de l'article provenant de la source Math-Net.Ru

We study Fourier series of Jacobi polynomials $P_k^{\alpha-r,-r}(x)$, $k=r,r+1,\dots$, orthogonal with respect to the Sobolev-type inner product of the following form: $$ \langle f,g\rangle=\sum_{\nu=0}^{r-1} f^{(\nu)}(-1)g^{(\nu)}(-1) +\int_{-1}^1f^{(r)}(t)g^{(r)}(t)(1-t)^\alpha\,dt. $$ It is shown that such series are a particular case of mixed series of Jacobi polynomials $P_k^{\alpha,\beta}(x)$, $k=0,1,\dots$, considered earlier by the author. We study the convergence of mixed series of general Jacobi polynomials and their approximation properties. The results obtained are applied to the study of the approximation properties of Fourier series of Sobolev orthogonal Jacobi polynomials $P_k^{\alpha-r,-r}(x)$.
Keywords: mixed series of Sobolev orthogonal Jacobi polynomials Jacobi polynomials, Fourier–Sobolev series of Jacobi polynomials and their approximation properties.
@article{MZM_2017_101_4_a10,
     author = {I. I. Sharapudinov},
     title = {Approximation {Properties} of {Fourier} {Series} of {Sobolev} {Orthogonal} {Polynomials} with {Jacobi} {Weight} and {Discrete} {Masses}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {611--629},
     publisher = {mathdoc},
     volume = {101},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a10/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Approximation Properties of Fourier Series of Sobolev Orthogonal Polynomials with Jacobi Weight and Discrete Masses
JO  - Matematičeskie zametki
PY  - 2017
SP  - 611
EP  - 629
VL  - 101
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a10/
LA  - ru
ID  - MZM_2017_101_4_a10
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Approximation Properties of Fourier Series of Sobolev Orthogonal Polynomials with Jacobi Weight and Discrete Masses
%J Matematičeskie zametki
%D 2017
%P 611-629
%V 101
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a10/
%G ru
%F MZM_2017_101_4_a10
I. I. Sharapudinov. Approximation Properties of Fourier Series of Sobolev Orthogonal Polynomials with Jacobi Weight and Discrete Masses. Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 611-629. http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a10/