Approximation Properties of Fourier Series of Sobolev Orthogonal Polynomials with Jacobi Weight and Discrete Masses
Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 611-629.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study Fourier series of Jacobi polynomials $P_k^{\alpha-r,-r}(x)$, $k=r,r+1,\dots$, orthogonal with respect to the Sobolev-type inner product of the following form: $$ \langle f,g\rangle=\sum_{\nu=0}^{r-1} f^{(\nu)}(-1)g^{(\nu)}(-1) +\int_{-1}^1f^{(r)}(t)g^{(r)}(t)(1-t)^\alpha\,dt. $$ It is shown that such series are a particular case of mixed series of Jacobi polynomials $P_k^{\alpha,\beta}(x)$, $k=0,1,\dots$, considered earlier by the author. We study the convergence of mixed series of general Jacobi polynomials and their approximation properties. The results obtained are applied to the study of the approximation properties of Fourier series of Sobolev orthogonal Jacobi polynomials $P_k^{\alpha-r,-r}(x)$.
Keywords: mixed series of Sobolev orthogonal Jacobi polynomials Jacobi polynomials, Fourier–Sobolev series of Jacobi polynomials and their approximation properties.
@article{MZM_2017_101_4_a10,
     author = {I. I. Sharapudinov},
     title = {Approximation {Properties} of {Fourier} {Series} of {Sobolev} {Orthogonal} {Polynomials} with {Jacobi} {Weight} and {Discrete} {Masses}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {611--629},
     publisher = {mathdoc},
     volume = {101},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a10/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Approximation Properties of Fourier Series of Sobolev Orthogonal Polynomials with Jacobi Weight and Discrete Masses
JO  - Matematičeskie zametki
PY  - 2017
SP  - 611
EP  - 629
VL  - 101
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a10/
LA  - ru
ID  - MZM_2017_101_4_a10
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Approximation Properties of Fourier Series of Sobolev Orthogonal Polynomials with Jacobi Weight and Discrete Masses
%J Matematičeskie zametki
%D 2017
%P 611-629
%V 101
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a10/
%G ru
%F MZM_2017_101_4_a10
I. I. Sharapudinov. Approximation Properties of Fourier Series of Sobolev Orthogonal Polynomials with Jacobi Weight and Discrete Masses. Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 611-629. http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a10/

[1] A. Iserles, P. E. Koch, S. P. Norsett, J. M. Sanz-Serna, “On polynomials orthogonal with respect to certain Sobolev inner products”, J. Approx. Theory, 65:2 (1991), 151–175 | DOI | MR | Zbl

[2] F. Marcellán, M. Alfaro, M. L. Rezola, “Orthogonal polynomials on Sobolev spaces: old and new directions”, J. Comput. Appl. Math., 48:1-2 (1993), 113–131 | DOI | MR | Zbl

[3] H. G. Meijer, “Laguerre polynomials generalized to a certain discrete Sobolev inner product space”, J. Approx. Theory, 73:1 (1993), 1–16 | DOI | MR | Zbl

[4] G. López, F. Marcellán, W. Van Assche, “Relative asymptotics for polynomials orthogonal with respect to a discrete Sobolev inner product”, Constr. Approx., 11:1 (1995), 107–137 | DOI | MR | Zbl

[5] K. H. Kwon, L. L. Littlejohn, “The orthogonality of the Laguerre polynomials $\{L_n^{(-k)}(x)\}$ for positive integers $k$”, Ann. Numer. Math., 2:1-4 (1995), 289–303 | MR | Zbl

[6] K. H. Kwon, L. L. Littlejohn, “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 28:2 (1998), 547–594 | DOI | MR | Zbl

[7] F. Marcellan, Y. Xu, On Sobolev Orthogonal Polynomials, 2014, arXiv: 1403.6249

[8] A. A. Gonchar, “O skhodimosti approksimatsii Pade dlya nekotorykh klassov meromorfnykh funktsii”, Matem. sb., 97 (139):4 (8) (1975), 607–629 | MR | Zbl

[9] G. Segë, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962 | MR | Zbl

[10] I. I. Sharapudinov, “Priblizhenie funktsii s peremennoi gladkostyu summami Fure–Lezhandra”, Matem. sb., 191:5 (2000), 143–160 | DOI | MR | Zbl

[11] I. I. Sharapudinov, “Approksimativnye svoistva operatorov $\mathscr Y_{n+2r}(f)$ i ikh diskretnykh analogov”, Matem. zametki, 72:5 (2002), 765–795 | DOI | MR | Zbl

[12] I. I. Sharapudinov, Smeshannye ryady po ortogonalnym polinomam, Izd-vo Dagestanskogo nauchnogo tsentra, Makhachkala, 2004

[13] I. I. Sharapudinov, “Approksimativnye svoistva smeshannykh ryadov po polinomam Lezhandra na klassakh $W^r$”, Matem. sb., 197:3 (2006), 135–154 | DOI | MR | Zbl

[14] I. I. Sharapudinov, “Approksimativnye svoistva srednikh tipa Valle-Pussena chastichnykh summ smeshannogo ryada po polinomam Lezhandra”, Matem. zametki, 84:3 (2008), 452–471 | DOI | MR | Zbl

[15] I. I. Sharapudinov, “Smeshannye ryady po ultrasfericheskim polinomam i ikh approksimativnye svoistva”, Matem. sb., 194:3 (2003), 115–148 | DOI | MR | Zbl

[16] I. I. Sharapudinov, T. I. Sharapudinov, “Smeshannye ryady po polinomam Yakobi i Chebysheva i ikh diskretizatsiya”, Matem. zametki, 88:1 (2010), 116–147 | DOI | MR | Zbl

[17] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatlit, M., 1960 | MR

[18] S. A. Telyakovskii, “Dve teoremy o priblizhenii funktsii algebraicheskimi mnogochlenami”, Matem. sb., 70 (112):2 (1966), 252–265 | MR | Zbl

[19] I. Z. Gopengauz, “K teoreme A. F. Timana o priblizhenii funktsii mnogochlenami na konechnom otrezke”, Matem. zametki, 1:2 (1967), 163–172 | MR | Zbl