Mots-clés : diffusion process
@article{MZM_2017_101_3_a2,
author = {Ya. I. Belopol'skaya},
title = {Probabilistic {Models} of the {Dynamics} of the {Growth} of {Cells} under {Contact} {Inhibition}},
journal = {Matemati\v{c}eskie zametki},
pages = {346--358},
year = {2017},
volume = {101},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a2/}
}
Ya. I. Belopol'skaya. Probabilistic Models of the Dynamics of the Growth of Cells under Contact Inhibition. Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 346-358. http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a2/
[1] M. Abercombie, “Contact inhibition in tissue culture”, In Vitro, 6:2 (1970), 128–142 | DOI
[2] M. Bertsch, R. Dal Passo, M. Mimura, “A free boundary problem arising in a simplified tumour growth model of contact inhibition”, Interfaces Free Bound., 12:2 (2010), 235–250 | DOI | MR | Zbl
[3] M. Bertsch, D. Hilhorst, H. Izuhara, M. Mimura, “A nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth”, Differ. Equ. Appl., 4:1 (2012), 137–157 | DOI | MR | Zbl
[4] Ya. I. Belopolskaya, “Veroyatnostnye modeli zakonov sokhraneniya i balansa v rezhimakh s pereklyucheniyami”, Zap. nauchn. sem. POMI, 454, POMI, SPb., 2016, 5–43
[5] H. Kunita, “Stochastic flows acting on Schwartz distributions”, J. Theoret. Probab., 7:2 (1994), 247–278 | DOI | MR | Zbl
[6] H. Kunita, “Generalized solutions of a stochastic partial differential equation”, J. Theoret. Probab., 7:2 (1994), 279–308 | DOI | MR | Zbl
[7] Ya. Belopolskaya, W. Woyczynski, “Generalized solutions of the Cauchy problem for systems of nonlinear parabolic equations and diffusion processes”, Stoch. Dyn., 12:1 (2012), 1150001 | MR | Zbl
[8] D. Serre, Systems of Conservation Laws. 1. Hyperbolicity, Entropies, Shock Waves, Cambridge Univ. Press., Cambridge, 2003 | MR | Zbl
[9] Ya. Belopolskaya, W. A. Woyczynski, “Generalized solutions of nonlinear parabolic equations and diffusion processes”, Acta Appl. Math., 96:1-3 (2007), 55–69 | DOI | MR | Zbl