Probabilistic Models of the Dynamics of the Growth of Cells under Contact Inhibition
Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 346-358.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a probabilistic representation for the generalized solution of the Cauchy problem for the system of strongly coupled nonlinear parabolic equations describing the growth of cells under contact inhibition.
Keywords: stochastic flow, system of nonlinear parabolic equations, generalized solution of the Cauchy problem.
Mots-clés : diffusion process
@article{MZM_2017_101_3_a2,
     author = {Ya. I. Belopol'skaya},
     title = {Probabilistic {Models} of the {Dynamics} of the {Growth} of {Cells} under {Contact} {Inhibition}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {346--358},
     publisher = {mathdoc},
     volume = {101},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a2/}
}
TY  - JOUR
AU  - Ya. I. Belopol'skaya
TI  - Probabilistic Models of the Dynamics of the Growth of Cells under Contact Inhibition
JO  - Matematičeskie zametki
PY  - 2017
SP  - 346
EP  - 358
VL  - 101
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a2/
LA  - ru
ID  - MZM_2017_101_3_a2
ER  - 
%0 Journal Article
%A Ya. I. Belopol'skaya
%T Probabilistic Models of the Dynamics of the Growth of Cells under Contact Inhibition
%J Matematičeskie zametki
%D 2017
%P 346-358
%V 101
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a2/
%G ru
%F MZM_2017_101_3_a2
Ya. I. Belopol'skaya. Probabilistic Models of the Dynamics of the Growth of Cells under Contact Inhibition. Matematičeskie zametki, Tome 101 (2017) no. 3, pp. 346-358. http://geodesic.mathdoc.fr/item/MZM_2017_101_3_a2/

[1] M. Abercombie, “Contact inhibition in tissue culture”, In Vitro, 6:2 (1970), 128–142 | DOI

[2] M. Bertsch, R. Dal Passo, M. Mimura, “A free boundary problem arising in a simplified tumour growth model of contact inhibition”, Interfaces Free Bound., 12:2 (2010), 235–250 | DOI | MR | Zbl

[3] M. Bertsch, D. Hilhorst, H. Izuhara, M. Mimura, “A nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth”, Differ. Equ. Appl., 4:1 (2012), 137–157 | DOI | MR | Zbl

[4] Ya. I. Belopolskaya, “Veroyatnostnye modeli zakonov sokhraneniya i balansa v rezhimakh s pereklyucheniyami”, Zap. nauchn. sem. POMI, 454, POMI, SPb., 2016, 5–43

[5] H. Kunita, “Stochastic flows acting on Schwartz distributions”, J. Theoret. Probab., 7:2 (1994), 247–278 | DOI | MR | Zbl

[6] H. Kunita, “Generalized solutions of a stochastic partial differential equation”, J. Theoret. Probab., 7:2 (1994), 279–308 | DOI | MR | Zbl

[7] Ya. Belopolskaya, W. Woyczynski, “Generalized solutions of the Cauchy problem for systems of nonlinear parabolic equations and diffusion processes”, Stoch. Dyn., 12:1 (2012), 1150001 | MR | Zbl

[8] D. Serre, Systems of Conservation Laws. 1. Hyperbolicity, Entropies, Shock Waves, Cambridge Univ. Press., Cambridge, 2003 | MR | Zbl

[9] Ya. Belopolskaya, W. A. Woyczynski, “Generalized solutions of nonlinear parabolic equations and diffusion processes”, Acta Appl. Math., 96:1-3 (2007), 55–69 | DOI | MR | Zbl