Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_101_2_a9, author = {V. N. Pavlenko and D. K. Potapov}, title = {Existence of {Three} {Nontrivial} {Solutions} of an {Elliptic} {Boundary-Value} {Problem} with {Discontinuous} {Nonlinearity} in the {Case} of {Strong} {Resonance}}, journal = {Matemati\v{c}eskie zametki}, pages = {247--261}, publisher = {mathdoc}, volume = {101}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a9/} }
TY - JOUR AU - V. N. Pavlenko AU - D. K. Potapov TI - Existence of Three Nontrivial Solutions of an Elliptic Boundary-Value Problem with Discontinuous Nonlinearity in the Case of Strong Resonance JO - Matematičeskie zametki PY - 2017 SP - 247 EP - 261 VL - 101 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a9/ LA - ru ID - MZM_2017_101_2_a9 ER -
%0 Journal Article %A V. N. Pavlenko %A D. K. Potapov %T Existence of Three Nontrivial Solutions of an Elliptic Boundary-Value Problem with Discontinuous Nonlinearity in the Case of Strong Resonance %J Matematičeskie zametki %D 2017 %P 247-261 %V 101 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a9/ %G ru %F MZM_2017_101_2_a9
V. N. Pavlenko; D. K. Potapov. Existence of Three Nontrivial Solutions of an Elliptic Boundary-Value Problem with Discontinuous Nonlinearity in the Case of Strong Resonance. Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 247-261. http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a9/
[1] M. A. Krasnoselskii, A. V. Pokrovskii, Sistemy s gisterezisom, Nauka, M., 1983 | MR | Zbl
[2] P. Bartolo, V. Benci, D. Fortunato, “Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity”, Nonlinear Anal., Theory Methods Appl., 7:9 (1983), 981–1012 | DOI | MR | Zbl
[3] J. V. A. Gonçalves, O. H. Miyagaki, “Three solutions for a strongly resonant elliptic problem”, Nonlinear Anal., Theory Methods Appl., 24:2 (1995), 265–272 | DOI | MR | Zbl
[4] N. C. Kourogenis, N. S. Papageorgiou, “Multiple solutions for nonlinear discontinuous strongly resonant elliptic problems”, J. Math. Soc. Japan, 53:1 (2001), 17–34 | MR | Zbl
[5] L. Gasiński, N. S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Ser. in Math. Anal. Appl., 8, Chapman Hall, Boca Raton, FL, 2005 | MR | Zbl
[6] F. Klark, Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR
[7] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl
[8] K.-c. Chang, “Free boundary problems and the set-valued mappings”, J. Differential Equations, 49:1 (1983), 1–28 | DOI | MR | Zbl
[9] S. A. Marano, D. Motreanu, “On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems”, Nonlinear Anal., Theory Methods Appl., 48:1 (2002), 37–52 | DOI | MR | Zbl
[10] G. Bonanno, “Some remarks on a three critical points theorem”, Nonlinear Anal., Theory Methods Appl., 54:4 (2003), 651–665 | DOI | MR | Zbl
[11] G. Bonanno, P. Candito, “Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities”, J. Differential Equations, 244:12 (2008), 3031–3059 | DOI | MR | Zbl
[12] M. A. Krasnoselskii, A. V. Pokrovskii, “Pravilnye resheniya uravnenii s razryvnymi nelineinostyami”, Dokl. AN SSSR, 226:3 (1976), 506–509 | MR | Zbl
[13] V. N. Pavlenko, “Variatsionnyi metod dlya uravnenii s razryvnymi operatorami”, Vestn. Chelyab. gos. un-ta. Ser. 3. Matem. Mekhan., 1994, no. 1 (2), 87–95 | Zbl
[14] V. N. Pavlenko, D. K. Potapov, “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii s razryvnymi operatorami”, Sib. matem. zhurn., 42:4 (2001), 911–919 | MR | Zbl
[15] K.-C. Chang, “Variational methods for non-differentiable functionals and their applications to partial differential equations”, J. Math. Anal. Appl., 80:1 (1981), 102–129 | DOI | MR | Zbl
[16] N. Mizoguchi, “Existence of nontrivial solutions of partial differential equations with discontiuous nonlinearities”, Nonlinear Anal., Theory Methods Appl., 16:11 (1991), 1025–1034 | DOI | MR | Zbl
[17] D. K. Potapov, “Nepreryvnye approksimatsii zadachi Goldshtika”, Matem. zametki, 87:2 (2010), 262–266 | DOI | MR | Zbl
[18] D. K. Potapov, “O resheniyakh zadachi Goldshtika”, Sib. zhurn. vychisl. matem., 15:4 (2012), 409–415 | Zbl
[19] D. K. Potapov, V. V. Yevstafyeva, “Lavrent'ev problem for separated flows with an external perturbation”, Electron. J. Differential Equations, 255 (2013), 6 pp. | MR | Zbl
[20] D. K. Potapov, “Ob odnoi zadache elektrofiziki s razryvnoi nelineinostyu”, Differents. uravneniya, 50:3 (2014), 421–424 | DOI | MR | Zbl
[21] D. K. Potapov, “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami v kriticheskom sluchae”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 2004, no. 4, 125–132
[22] D. K. Potapov, “O strukture mnozhestva sobstvennykh znachenii dlya uravnenii ellipticheskogo tipa vysokogo poryadka s razryvnymi nelineinostyami”, Differents. uravneniya, 46:1 (2010), 150–152 | Zbl
[23] D. K. Potapov, “Bifurkatsionnye zadachi dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Matem. zametki, 90:2 (2011), 280–284 | DOI | MR | Zbl
[24] D. K. Potapov, “Spektralnye zadachi dlya variatsionnykh neravenstv s razryvnymi operatorami”, Matem. zametki, 93:2 (2013), 252–262 | DOI | Zbl
[25] Zh.-P. Oben, I. Ekland, Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR | Zbl
[26] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1974 | MR | Zbl