Existence of Three Nontrivial Solutions of an Elliptic Boundary-Value Problem with Discontinuous Nonlinearity in the Case of Strong Resonance
Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 247-261.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a strongly resonant homogeneous Dirichlet problem for elliptic-type equations with discontinuous nonlinearity in the phase variable. Using the variational method, we prove an existence theorem for at least three nontrivial solutions of the problem under consideration; at least two of these are semiregular. The resulting theorem is applied to the eigenvalue problem for elliptic-type equations with discontinuous nonlinearity with positive spectral parameter. An example of a discontinuous nonlinearity satisfying all the assumptions of the theorem is given.
Keywords: elliptic boundary-value problem, strong resonance, discontinuous nonlinearity, nontrivial and semiregular solution.
@article{MZM_2017_101_2_a9,
     author = {V. N. Pavlenko and D. K. Potapov},
     title = {Existence of {Three} {Nontrivial} {Solutions} of an {Elliptic} {Boundary-Value} {Problem} with {Discontinuous} {Nonlinearity} in the {Case} of {Strong} {Resonance}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {247--261},
     publisher = {mathdoc},
     volume = {101},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a9/}
}
TY  - JOUR
AU  - V. N. Pavlenko
AU  - D. K. Potapov
TI  - Existence of Three Nontrivial Solutions of an Elliptic Boundary-Value Problem with Discontinuous Nonlinearity in the Case of Strong Resonance
JO  - Matematičeskie zametki
PY  - 2017
SP  - 247
EP  - 261
VL  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a9/
LA  - ru
ID  - MZM_2017_101_2_a9
ER  - 
%0 Journal Article
%A V. N. Pavlenko
%A D. K. Potapov
%T Existence of Three Nontrivial Solutions of an Elliptic Boundary-Value Problem with Discontinuous Nonlinearity in the Case of Strong Resonance
%J Matematičeskie zametki
%D 2017
%P 247-261
%V 101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a9/
%G ru
%F MZM_2017_101_2_a9
V. N. Pavlenko; D. K. Potapov. Existence of Three Nontrivial Solutions of an Elliptic Boundary-Value Problem with Discontinuous Nonlinearity in the Case of Strong Resonance. Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 247-261. http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a9/

[1] M. A. Krasnoselskii, A. V. Pokrovskii, Sistemy s gisterezisom, Nauka, M., 1983 | MR | Zbl

[2] P. Bartolo, V. Benci, D. Fortunato, “Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity”, Nonlinear Anal., Theory Methods Appl., 7:9 (1983), 981–1012 | DOI | MR | Zbl

[3] J. V. A. Gonçalves, O. H. Miyagaki, “Three solutions for a strongly resonant elliptic problem”, Nonlinear Anal., Theory Methods Appl., 24:2 (1995), 265–272 | DOI | MR | Zbl

[4] N. C. Kourogenis, N. S. Papageorgiou, “Multiple solutions for nonlinear discontinuous strongly resonant elliptic problems”, J. Math. Soc. Japan, 53:1 (2001), 17–34 | MR | Zbl

[5] L. Gasiński, N. S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Ser. in Math. Anal. Appl., 8, Chapman Hall, Boca Raton, FL, 2005 | MR | Zbl

[6] F. Klark, Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR

[7] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[8] K.-c. Chang, “Free boundary problems and the set-valued mappings”, J. Differential Equations, 49:1 (1983), 1–28 | DOI | MR | Zbl

[9] S. A. Marano, D. Motreanu, “On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems”, Nonlinear Anal., Theory Methods Appl., 48:1 (2002), 37–52 | DOI | MR | Zbl

[10] G. Bonanno, “Some remarks on a three critical points theorem”, Nonlinear Anal., Theory Methods Appl., 54:4 (2003), 651–665 | DOI | MR | Zbl

[11] G. Bonanno, P. Candito, “Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities”, J. Differential Equations, 244:12 (2008), 3031–3059 | DOI | MR | Zbl

[12] M. A. Krasnoselskii, A. V. Pokrovskii, “Pravilnye resheniya uravnenii s razryvnymi nelineinostyami”, Dokl. AN SSSR, 226:3 (1976), 506–509 | MR | Zbl

[13] V. N. Pavlenko, “Variatsionnyi metod dlya uravnenii s razryvnymi operatorami”, Vestn. Chelyab. gos. un-ta. Ser. 3. Matem. Mekhan., 1994, no. 1 (2), 87–95 | Zbl

[14] V. N. Pavlenko, D. K. Potapov, “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii s razryvnymi operatorami”, Sib. matem. zhurn., 42:4 (2001), 911–919 | MR | Zbl

[15] K.-C. Chang, “Variational methods for non-differentiable functionals and their applications to partial differential equations”, J. Math. Anal. Appl., 80:1 (1981), 102–129 | DOI | MR | Zbl

[16] N. Mizoguchi, “Existence of nontrivial solutions of partial differential equations with discontiuous nonlinearities”, Nonlinear Anal., Theory Methods Appl., 16:11 (1991), 1025–1034 | DOI | MR | Zbl

[17] D. K. Potapov, “Nepreryvnye approksimatsii zadachi Goldshtika”, Matem. zametki, 87:2 (2010), 262–266 | DOI | MR | Zbl

[18] D. K. Potapov, “O resheniyakh zadachi Goldshtika”, Sib. zhurn. vychisl. matem., 15:4 (2012), 409–415 | Zbl

[19] D. K. Potapov, V. V. Yevstafyeva, “Lavrent'ev problem for separated flows with an external perturbation”, Electron. J. Differential Equations, 255 (2013), 6 pp. | MR | Zbl

[20] D. K. Potapov, “Ob odnoi zadache elektrofiziki s razryvnoi nelineinostyu”, Differents. uravneniya, 50:3 (2014), 421–424 | DOI | MR | Zbl

[21] D. K. Potapov, “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami v kriticheskom sluchae”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 2004, no. 4, 125–132

[22] D. K. Potapov, “O strukture mnozhestva sobstvennykh znachenii dlya uravnenii ellipticheskogo tipa vysokogo poryadka s razryvnymi nelineinostyami”, Differents. uravneniya, 46:1 (2010), 150–152 | Zbl

[23] D. K. Potapov, “Bifurkatsionnye zadachi dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Matem. zametki, 90:2 (2011), 280–284 | DOI | MR | Zbl

[24] D. K. Potapov, “Spektralnye zadachi dlya variatsionnykh neravenstv s razryvnymi operatorami”, Matem. zametki, 93:2 (2013), 252–262 | DOI | Zbl

[25] Zh.-P. Oben, I. Ekland, Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR | Zbl

[26] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1974 | MR | Zbl