Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_101_2_a8, author = {A. B. Kupavskii and A. A. Poljanskij}, title = {On {Simplices} in {Diameter} {Graphs} in~$\mathbb R^4$}, journal = {Matemati\v{c}eskie zametki}, pages = {232--246}, publisher = {mathdoc}, volume = {101}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a8/} }
A. B. Kupavskii; A. A. Poljanskij. On Simplices in Diameter Graphs in~$\mathbb R^4$. Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 232-246. http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a8/
[1] K. Borsuk, “Drei Sätze über die $n$-dimensionale euklidische Sphäre”, Fund. Math., 20 (1933), 177–190 | Zbl
[2] P. Brass, W. Moser, J. Pach, Research Problems in Discrete Geometry, Springer, New York, 2005 | MR | Zbl
[3] A. M. Raigorodskii, “Problema Borsuka i khromaticheskie chisla nekotorykh metricheskikh prostranstv”, UMN, 56:1 (337) (2001), 107–146 | DOI | MR | Zbl
[4] A. M. Raigorodskii, “Vokrug gipotezy Borsuka”, Geometriya i mekhanika, SMFN, 23, RUDN, M., 2007, 147–164 | MR | Zbl
[5] A. M. Raigorodskii, “Cliques and cycles in distance graphs and graphs of diameters”, Discrete Geometry and Algebraic Combinatorics, Contemp. Math., 625, Amer. Math. Soc., Providence, RI, 2014, 93–109 | MR | Zbl
[6] A. M. Raigorodskii, “Coloring distance graphs and graphs of diameters”, Thirty Essays on Geometric Graph Theory, Springer, New York, 2013, 429–460 | MR | Zbl
[7] J. Kahn, G. Kalai, “A counterexample to Borsuk's conjecture”, Bull. Amer. Math. Soc. (N.S.), 29:1 (1993), 60–62 | DOI | MR | Zbl
[8] T. Jenrich, A. E. Brouwer, “A 64-dimensional counterexample to Borsuk's conjecture”, Electron. J. Combin., 21:4 (2014), Paper 4.29 | MR | Zbl
[9] A. V. Bondarenko, “On Borsuk's conjecture for two-distance sets”, Discrete Comput. Geom., 51:3 (2014), 509–515 | DOI | MR | Zbl
[10] H. Hopf, E. Pannwitz, “Aufgabe Nr. 167”, Jahr. Deutsch. Math.-Verein, 43 (1934), 114
[11] B. Grünbaum, “A proof of Vászonyi's conjecture”, Bull. Res. Council Israel. Sect. A, 6 (1956), 77–78 | MR | Zbl
[12] A. Heppes, “Beweis einer Vermutung von A. Vázsonyi”, Acta Math. Acad. Sci. Hungar., 7 (1957), 463–466 | DOI | MR
[13] S. Straszewicz, “Sur un problème géométrique de P. Erdős”, Bull. Acad. Polon. Sci. Cl. III, 5 (1957), 39–40 | MR | Zbl
[14] P. Erdős, “On sets of distances of $n$ points in Euclidean space”, Magyar Tud. Akad. Mat. Kutató Int. Közl., 5 (1960), 165–169 | MR | Zbl
[15] K. J. Swanepoel, “Unit distances and diameters in Euclidean spaces”, Discrete Comput. Geom., 41:1 (2009), 1–27 | DOI | MR | Zbl
[16] Z. Schur, M. A. Perles, H. Martini, Y. S. Kupitz, “On the number of maximal regular simplices determined by $n$ points in $\mathbb R^d$”, Discrete and Computational Geometry, Algorithms Combin., 25, Springer-Verlag, Berlin, 2003, 767–787 | MR | Zbl
[17] F. Morić, J. Pach, “Remarks on Schur's conjecture”, Computational Geometry and Graphs, Lecture Notes in Comput. Sci., 8296, Springer-Verlag, Berlin, 2013, 120–131 | Zbl
[18] A. Kupavskii, “Diameter graphs in $\mathbb R^4$”, Discrete Comput. Geom., 51:4 (2014), 842–858 | DOI | MR | Zbl
[19] V. V. Bulankina, A. B. Kupavskii, A. A. Polyanskii, “Zametka o gipoteze Shura v $\mathbb R^4$”, Dokl. AN, 454 (2014), 507–511 | DOI | MR | Zbl
[20] A. Kupavskii, A. Polyanskii, “Proof of Schur's conjecture in $\mathbb R^d$”, Combinatorica (to appear) , arXiv: 1402.3694
[21] I. Bárány, “The densest $(n+2)$-set in $\mathbb R^n$”, Intuitive Geometry, Coll. Math. Soc. János Bolyai, 63, North-Holland, Amsterdam, 1994, 7–10 | MR | Zbl