On Simplices in Diameter Graphs in~$\mathbb R^4$
Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 232-246

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph $G$ is a diameter graph in $\mathbb R^d$ if its vertex set is a finite subset in $\mathbb R^d$ of diameter $1$ and edges join pairs of vertices a unit distance apart. It is shown that if a diameter graph $G$ in $\mathbb R^4$ contains the complete subgraph $K$ on five vertices, then any triangle in $G$ shares a vertex with $K$. The geometric interpretation of this statement is as follows. Given any regular unit simplex on five vertices and any regular unit triangle in $\mathbb R^4$, then either the simplex and the triangle have a common vertex or the diameter of the union of their vertex sets is strictly greater than $1$.
Keywords: diameter graphs, Schur's conjecture.
@article{MZM_2017_101_2_a8,
     author = {A. B. Kupavskii and A. A. Poljanskij},
     title = {On {Simplices} in {Diameter} {Graphs} in~$\mathbb R^4$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {232--246},
     publisher = {mathdoc},
     volume = {101},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a8/}
}
TY  - JOUR
AU  - A. B. Kupavskii
AU  - A. A. Poljanskij
TI  - On Simplices in Diameter Graphs in~$\mathbb R^4$
JO  - Matematičeskie zametki
PY  - 2017
SP  - 232
EP  - 246
VL  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a8/
LA  - ru
ID  - MZM_2017_101_2_a8
ER  - 
%0 Journal Article
%A A. B. Kupavskii
%A A. A. Poljanskij
%T On Simplices in Diameter Graphs in~$\mathbb R^4$
%J Matematičeskie zametki
%D 2017
%P 232-246
%V 101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a8/
%G ru
%F MZM_2017_101_2_a8
A. B. Kupavskii; A. A. Poljanskij. On Simplices in Diameter Graphs in~$\mathbb R^4$. Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 232-246. http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a8/