On Simplices in Diameter Graphs in~$\mathbb R^4$
Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 232-246.

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph $G$ is a diameter graph in $\mathbb R^d$ if its vertex set is a finite subset in $\mathbb R^d$ of diameter $1$ and edges join pairs of vertices a unit distance apart. It is shown that if a diameter graph $G$ in $\mathbb R^4$ contains the complete subgraph $K$ on five vertices, then any triangle in $G$ shares a vertex with $K$. The geometric interpretation of this statement is as follows. Given any regular unit simplex on five vertices and any regular unit triangle in $\mathbb R^4$, then either the simplex and the triangle have a common vertex or the diameter of the union of their vertex sets is strictly greater than $1$.
Keywords: diameter graphs, Schur's conjecture.
@article{MZM_2017_101_2_a8,
     author = {A. B. Kupavskii and A. A. Poljanskij},
     title = {On {Simplices} in {Diameter} {Graphs} in~$\mathbb R^4$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {232--246},
     publisher = {mathdoc},
     volume = {101},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a8/}
}
TY  - JOUR
AU  - A. B. Kupavskii
AU  - A. A. Poljanskij
TI  - On Simplices in Diameter Graphs in~$\mathbb R^4$
JO  - Matematičeskie zametki
PY  - 2017
SP  - 232
EP  - 246
VL  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a8/
LA  - ru
ID  - MZM_2017_101_2_a8
ER  - 
%0 Journal Article
%A A. B. Kupavskii
%A A. A. Poljanskij
%T On Simplices in Diameter Graphs in~$\mathbb R^4$
%J Matematičeskie zametki
%D 2017
%P 232-246
%V 101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a8/
%G ru
%F MZM_2017_101_2_a8
A. B. Kupavskii; A. A. Poljanskij. On Simplices in Diameter Graphs in~$\mathbb R^4$. Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 232-246. http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a8/

[1] K. Borsuk, “Drei Sätze über die $n$-dimensionale euklidische Sphäre”, Fund. Math., 20 (1933), 177–190 | Zbl

[2] P. Brass, W. Moser, J. Pach, Research Problems in Discrete Geometry, Springer, New York, 2005 | MR | Zbl

[3] A. M. Raigorodskii, “Problema Borsuka i khromaticheskie chisla nekotorykh metricheskikh prostranstv”, UMN, 56:1 (337) (2001), 107–146 | DOI | MR | Zbl

[4] A. M. Raigorodskii, “Vokrug gipotezy Borsuka”, Geometriya i mekhanika, SMFN, 23, RUDN, M., 2007, 147–164 | MR | Zbl

[5] A. M. Raigorodskii, “Cliques and cycles in distance graphs and graphs of diameters”, Discrete Geometry and Algebraic Combinatorics, Contemp. Math., 625, Amer. Math. Soc., Providence, RI, 2014, 93–109 | MR | Zbl

[6] A. M. Raigorodskii, “Coloring distance graphs and graphs of diameters”, Thirty Essays on Geometric Graph Theory, Springer, New York, 2013, 429–460 | MR | Zbl

[7] J. Kahn, G. Kalai, “A counterexample to Borsuk's conjecture”, Bull. Amer. Math. Soc. (N.S.), 29:1 (1993), 60–62 | DOI | MR | Zbl

[8] T. Jenrich, A. E. Brouwer, “A 64-dimensional counterexample to Borsuk's conjecture”, Electron. J. Combin., 21:4 (2014), Paper 4.29 | MR | Zbl

[9] A. V. Bondarenko, “On Borsuk's conjecture for two-distance sets”, Discrete Comput. Geom., 51:3 (2014), 509–515 | DOI | MR | Zbl

[10] H. Hopf, E. Pannwitz, “Aufgabe Nr. 167”, Jahr. Deutsch. Math.-Verein, 43 (1934), 114

[11] B. Grünbaum, “A proof of Vászonyi's conjecture”, Bull. Res. Council Israel. Sect. A, 6 (1956), 77–78 | MR | Zbl

[12] A. Heppes, “Beweis einer Vermutung von A. Vázsonyi”, Acta Math. Acad. Sci. Hungar., 7 (1957), 463–466 | DOI | MR

[13] S. Straszewicz, “Sur un problème géométrique de P. Erdős”, Bull. Acad. Polon. Sci. Cl. III, 5 (1957), 39–40 | MR | Zbl

[14] P. Erdős, “On sets of distances of $n$ points in Euclidean space”, Magyar Tud. Akad. Mat. Kutató Int. Közl., 5 (1960), 165–169 | MR | Zbl

[15] K. J. Swanepoel, “Unit distances and diameters in Euclidean spaces”, Discrete Comput. Geom., 41:1 (2009), 1–27 | DOI | MR | Zbl

[16] Z. Schur, M. A. Perles, H. Martini, Y. S. Kupitz, “On the number of maximal regular simplices determined by $n$ points in $\mathbb R^d$”, Discrete and Computational Geometry, Algorithms Combin., 25, Springer-Verlag, Berlin, 2003, 767–787 | MR | Zbl

[17] F. Morić, J. Pach, “Remarks on Schur's conjecture”, Computational Geometry and Graphs, Lecture Notes in Comput. Sci., 8296, Springer-Verlag, Berlin, 2013, 120–131 | Zbl

[18] A. Kupavskii, “Diameter graphs in $\mathbb R^4$”, Discrete Comput. Geom., 51:4 (2014), 842–858 | DOI | MR | Zbl

[19] V. V. Bulankina, A. B. Kupavskii, A. A. Polyanskii, “Zametka o gipoteze Shura v $\mathbb R^4$”, Dokl. AN, 454 (2014), 507–511 | DOI | MR | Zbl

[20] A. Kupavskii, A. Polyanskii, “Proof of Schur's conjecture in $\mathbb R^d$”, Combinatorica (to appear) , arXiv: 1402.3694

[21] I. Bárány, “The densest $(n+2)$-set in $\mathbb R^n$”, Intuitive Geometry, Coll. Math. Soc. János Bolyai, 63, North-Holland, Amsterdam, 1994, 7–10 | MR | Zbl