Positive Definiteness of a Family of Functions
Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 215-225.

Voir la notice de l'article provenant de la source Math-Net.Ru

General necessary conditions on the real parameters $\alpha$, $\beta$, $C$$D$ for the function $$ e^{-\alpha\rho(x)}(C\cos\beta\rho(x)+D\sin\beta\rho(x)), $$ where $\rho$ is the norm on $\mathbb R^n$, to be positive definite on $\mathbb R^n$, are obtained. For $\rho(x)=\|x\|_p$, a criterion on these parameters is obtained in the following cases: (i) $p=1$ or $p=2$; (ii) $3$ and $n=2$.
Keywords: positive definite function, Bochner's theorem.
Mots-clés : Fourier transform
@article{MZM_2017_101_2_a6,
     author = {V. P. Zastavnyi},
     title = {Positive {Definiteness} of a {Family} of {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {215--225},
     publisher = {mathdoc},
     volume = {101},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a6/}
}
TY  - JOUR
AU  - V. P. Zastavnyi
TI  - Positive Definiteness of a Family of Functions
JO  - Matematičeskie zametki
PY  - 2017
SP  - 215
EP  - 225
VL  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a6/
LA  - ru
ID  - MZM_2017_101_2_a6
ER  - 
%0 Journal Article
%A V. P. Zastavnyi
%T Positive Definiteness of a Family of Functions
%J Matematičeskie zametki
%D 2017
%P 215-225
%V 101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a6/
%G ru
%F MZM_2017_101_2_a6
V. P. Zastavnyi. Positive Definiteness of a Family of Functions. Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 215-225. http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a6/

[1] V. P. Zastavnyi, Polozhitelno opredelennye funktsii, zavisyaschie ot normy. Reshenie problemy Shenberga (Preprint), Institut prikladnoi matematiki i mekhaniki NAN Ukrainy, Donetsk, 1991

[2] V. P. Zastavnyi, “Polozhitelno opredelennye funktsii, zavisyaschie ot normy”, Dokl. AN, 325:5 (1992), 901–903 | MR

[3] V. P. Zastavnyi, “O nekotorykh svoistvakh odnogo klassa radialnykh polozhitelno opredelennykh funktsii”, Matematika segodnya, 94, Vischa shkola, Kiev, 1995, 118–127

[4] V. P. Zastavnyi, “O polozhitelnoi opredelennosti nekotorykh funktsii”, Dokl. AN, 365:2 (1999), 159–161 | MR

[5] V. P. Zastavnyi, “On positive definiteness of some functions”, J. Multivariate Anal., 73:1 (2000), 55–81 | DOI | MR | Zbl

[6] V. P. Zastavnyi, “Problems related to positive definite functions”, Positive Definite Functions: From Schoenberg to Space-Time Challenges, Editorial Universitat Jaume I. Department of Mathematics, Castello, 2008, 63–114

[7] N. N. Leonenko, M. I. Yadrenko, “O nekotorykh nereshennykh problemakh analiza i teorii veroyatnostei”, Matematika segodnya, 89, Vischa shkola, Kiev, 1989, 106–130 | MR | Zbl

[8] A. M. Yaglom, Correlation Theory of Stationary and Related Random Functions, I, Springer-Verlag, New York, 1987 | Zbl

[9] A. M. Yaglom, “Vvedenie v teoriyu statsionarnykh sluchainykh funktsii”, UMN, 7:5 (51) (1952), 3–168 | MR | Zbl

[10] C. Ma, “Covariance matrices for second-order vector random fields in space and time”, IEEE Trans. Signal Process., 59:5 (2011), 2160–2168 | DOI | MR

[11] N. I. Akhiezer, Lektsii ob integralnykh preobrazovaniyakh, Vischa shkola, Kharkov, 1984 | MR

[12] N. N. Vakhaniya, V. I. Tarieladze, S. A. Chobanyan, Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR | Zbl

[13] R. M. Trigub, E. S. Bellinsky, Fourier Analysis and Approximation of Functions, Kluwer Acad. Publ., Dordrecht, 2004 | Zbl

[14] C. S. Herz, “A class of negative-definite functions”, Proc. Amer. Math. Soc., 14:4 (1963), 670–676 | DOI | MR | Zbl

[15] V. P. Zastavnyi, “Positive definite functions depending on the norm”, Russ. J. Math. Phys., 1:4 (1993), 511–522 | MR | Zbl