Positive Definiteness of a Family of Functions
Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 215-225

Voir la notice de l'article provenant de la source Math-Net.Ru

General necessary conditions on the real parameters $\alpha$, $\beta$, $C$$D$ for the function $$ e^{-\alpha\rho(x)}(C\cos\beta\rho(x)+D\sin\beta\rho(x)), $$ where $\rho$ is the norm on $\mathbb R^n$, to be positive definite on $\mathbb R^n$, are obtained. For $\rho(x)=\|x\|_p$, a criterion on these parameters is obtained in the following cases: (i) $p=1$ or $p=2$; (ii) $3$ and $n=2$.
Keywords: positive definite function, Bochner's theorem.
Mots-clés : Fourier transform
@article{MZM_2017_101_2_a6,
     author = {V. P. Zastavnyi},
     title = {Positive {Definiteness} of a {Family} of {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {215--225},
     publisher = {mathdoc},
     volume = {101},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a6/}
}
TY  - JOUR
AU  - V. P. Zastavnyi
TI  - Positive Definiteness of a Family of Functions
JO  - Matematičeskie zametki
PY  - 2017
SP  - 215
EP  - 225
VL  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a6/
LA  - ru
ID  - MZM_2017_101_2_a6
ER  - 
%0 Journal Article
%A V. P. Zastavnyi
%T Positive Definiteness of a Family of Functions
%J Matematičeskie zametki
%D 2017
%P 215-225
%V 101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a6/
%G ru
%F MZM_2017_101_2_a6
V. P. Zastavnyi. Positive Definiteness of a Family of Functions. Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 215-225. http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a6/