Triviality of Bounded Solutions of the Stationary Ginzburg--Landau Equation on Spherically Symmetric Manifolds
Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 186-198.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain conditions for the validity of Liouville-type theorems on the triviality of bounded solutions of an elliptic inequality of special form as well as of the stationary Ginzburg–Landau equation for noncompact spherically symmetric Riemannian manifolds.
Mots-clés : Liouville's theorem
Keywords: noncompact Riemannian manifold, stationary Ginzburg–Landau equation.
@article{MZM_2017_101_2_a3,
     author = {S. S. Vikharev and A. G. Losev},
     title = {Triviality of {Bounded} {Solutions} of the {Stationary} {Ginzburg--Landau} {Equation} on {Spherically} {Symmetric} {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {186--198},
     publisher = {mathdoc},
     volume = {101},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a3/}
}
TY  - JOUR
AU  - S. S. Vikharev
AU  - A. G. Losev
TI  - Triviality of Bounded Solutions of the Stationary Ginzburg--Landau Equation on Spherically Symmetric Manifolds
JO  - Matematičeskie zametki
PY  - 2017
SP  - 186
EP  - 198
VL  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a3/
LA  - ru
ID  - MZM_2017_101_2_a3
ER  - 
%0 Journal Article
%A S. S. Vikharev
%A A. G. Losev
%T Triviality of Bounded Solutions of the Stationary Ginzburg--Landau Equation on Spherically Symmetric Manifolds
%J Matematičeskie zametki
%D 2017
%P 186-198
%V 101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a3/
%G ru
%F MZM_2017_101_2_a3
S. S. Vikharev; A. G. Losev. Triviality of Bounded Solutions of the Stationary Ginzburg--Landau Equation on Spherically Symmetric Manifolds. Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 186-198. http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a3/

[1] A. Grigor'yan, “Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Amer. Math. Soc. (N.S.), 36:2 (1999), 135–249 | DOI | MR | Zbl

[2] A. G. Losev, “Nekotorye liuvillevy teoremy na rimanovykh mnogoobraziyakh spetsialnogo vida”, Izv. vuzov. Matem., 1991, no. 12, 15–24 | MR | Zbl

[3] A. G. Losev, E. A. Mazepa, “Ogranichennye resheniya uravneniya Shredingera na rimanovykh proizvedeniyakh”, Algebra i analiz, 13:1 (2001), 84–110 | MR | Zbl

[4] A. G. Losev, Yu. S. Fedorenko, “O polozhitelnykh resheniyakh kvazilineinykh ellipticheskikh neravenstv na nekompaktnykh rimanovykh mnogoobraziyakh”, Matem. zametki, 81:6 (2007), 867–878 | DOI | MR | Zbl

[5] E. N. Dancer, Y. Du, “Some remarks on Liouville type results for quasilinear elliptic equations”, Proc. Amer. Math. Soc., 131:6 (2003), 1891–1899 | DOI | MR | Zbl

[6] M.-F. Bidaut-Véron, S. Pohozaev, “Non-existence results and estimates for some nonlinear elliptic problems”, J. Anal. Math., 84 (2001), 1–49 | DOI | MR | Zbl

[7] J. Diaz, “Nonlinear partial differential equations and free boundary problem. Vol. 1. Elliptic equations”, Res. Notes in Math., 106, Pitman, Boston, MA, 1985 | Zbl

[8] A. Grigor'yan, Y. Sun, “On nonnegative solutions of the inequality $\Delta u+u^\sigma\le 0$ on Riemannian manifolds”, Comm. Pure Appl. Math., 67:8 (2014), 1336–1352 | MR | Zbl

[9] J. Serrin, H. Zou, “Cauchy–Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities”, Acta. Math., 189:1 (2002), 79–142 | DOI | MR | Zbl

[10] H.-Ch. Zhang, “A note on Liouville type theorem of elliptic inequality $\Delta u+u^\sigma\le 0$ on Riemannian manifolds”, Potential Anal., 43:2 (2015), 269–276 | DOI | MR | Zbl

[11] V. L. Ginzburg, L. D. Landau, “K teorii sverkhprovodimosti”, ZhETF, 20 (1950), 1064–1091

[12] Igor S. Aranson, Lorenz Kramer, “The world of the complex Ginzburg–Landau equation”, Rev. Modern Phys., 74:1 (2002), 99–143 | DOI | MR | Zbl

[13] D. G. Aronson, H. F. Weinberger, “Multidimensional nonlinear diffusion arising in population genetics”, Adv. in Math., 30:1 (1978), 33–76 | DOI | MR | Zbl

[14] P. Tolksdorf, “Regularity for more general class of quasilinear elliptic equations”, J. Differential Equations, 51:1 (1984), 126–150 | DOI | MR | Zbl