Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_101_2_a3, author = {S. S. Vikharev and A. G. Losev}, title = {Triviality of {Bounded} {Solutions} of the {Stationary} {Ginzburg--Landau} {Equation} on {Spherically} {Symmetric} {Manifolds}}, journal = {Matemati\v{c}eskie zametki}, pages = {186--198}, publisher = {mathdoc}, volume = {101}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a3/} }
TY - JOUR AU - S. S. Vikharev AU - A. G. Losev TI - Triviality of Bounded Solutions of the Stationary Ginzburg--Landau Equation on Spherically Symmetric Manifolds JO - Matematičeskie zametki PY - 2017 SP - 186 EP - 198 VL - 101 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a3/ LA - ru ID - MZM_2017_101_2_a3 ER -
%0 Journal Article %A S. S. Vikharev %A A. G. Losev %T Triviality of Bounded Solutions of the Stationary Ginzburg--Landau Equation on Spherically Symmetric Manifolds %J Matematičeskie zametki %D 2017 %P 186-198 %V 101 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a3/ %G ru %F MZM_2017_101_2_a3
S. S. Vikharev; A. G. Losev. Triviality of Bounded Solutions of the Stationary Ginzburg--Landau Equation on Spherically Symmetric Manifolds. Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 186-198. http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a3/
[1] A. Grigor'yan, “Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Amer. Math. Soc. (N.S.), 36:2 (1999), 135–249 | DOI | MR | Zbl
[2] A. G. Losev, “Nekotorye liuvillevy teoremy na rimanovykh mnogoobraziyakh spetsialnogo vida”, Izv. vuzov. Matem., 1991, no. 12, 15–24 | MR | Zbl
[3] A. G. Losev, E. A. Mazepa, “Ogranichennye resheniya uravneniya Shredingera na rimanovykh proizvedeniyakh”, Algebra i analiz, 13:1 (2001), 84–110 | MR | Zbl
[4] A. G. Losev, Yu. S. Fedorenko, “O polozhitelnykh resheniyakh kvazilineinykh ellipticheskikh neravenstv na nekompaktnykh rimanovykh mnogoobraziyakh”, Matem. zametki, 81:6 (2007), 867–878 | DOI | MR | Zbl
[5] E. N. Dancer, Y. Du, “Some remarks on Liouville type results for quasilinear elliptic equations”, Proc. Amer. Math. Soc., 131:6 (2003), 1891–1899 | DOI | MR | Zbl
[6] M.-F. Bidaut-Véron, S. Pohozaev, “Non-existence results and estimates for some nonlinear elliptic problems”, J. Anal. Math., 84 (2001), 1–49 | DOI | MR | Zbl
[7] J. Diaz, “Nonlinear partial differential equations and free boundary problem. Vol. 1. Elliptic equations”, Res. Notes in Math., 106, Pitman, Boston, MA, 1985 | Zbl
[8] A. Grigor'yan, Y. Sun, “On nonnegative solutions of the inequality $\Delta u+u^\sigma\le 0$ on Riemannian manifolds”, Comm. Pure Appl. Math., 67:8 (2014), 1336–1352 | MR | Zbl
[9] J. Serrin, H. Zou, “Cauchy–Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities”, Acta. Math., 189:1 (2002), 79–142 | DOI | MR | Zbl
[10] H.-Ch. Zhang, “A note on Liouville type theorem of elliptic inequality $\Delta u+u^\sigma\le 0$ on Riemannian manifolds”, Potential Anal., 43:2 (2015), 269–276 | DOI | MR | Zbl
[11] V. L. Ginzburg, L. D. Landau, “K teorii sverkhprovodimosti”, ZhETF, 20 (1950), 1064–1091
[12] Igor S. Aranson, Lorenz Kramer, “The world of the complex Ginzburg–Landau equation”, Rev. Modern Phys., 74:1 (2002), 99–143 | DOI | MR | Zbl
[13] D. G. Aronson, H. F. Weinberger, “Multidimensional nonlinear diffusion arising in population genetics”, Adv. in Math., 30:1 (1978), 33–76 | DOI | MR | Zbl
[14] P. Tolksdorf, “Regularity for more general class of quasilinear elliptic equations”, J. Differential Equations, 51:1 (1984), 126–150 | DOI | MR | Zbl