Description of Normal Bases of Boundary Algebras and Factor Languages of Slow Growth
Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 181-185

Voir la notice de l'article provenant de la source Math-Net.Ru

For an algebra $A$, denote by $V_A(n)$ the dimension of the vector space spanned by the monomials whose length does not exceed $n$. Let $T_A(n)=V_A(n)-V_A(n-1)$. An algebra is said to be boundary if $T_A(n)-n\mathrm{const}$. In the paper, the normal bases are described for algebras of slow growth or for boundary algebras. Let $\mathscr L$ be a factor language over a finite alphabet $\mathscr A$. The growth function $T_{\mathscr L}(n)$ is the number of subwords of length $n$ in $\mathscr L$. We also describe the factor languages such that $T_{\mathscr L}(n)\le n+\mathrm{const}$.
Keywords: normal basis, Sturm sequence, growth function, factor language.
Mots-clés : monomial algebra
@article{MZM_2017_101_2_a2,
     author = {A. Ya. Belov and A. L. Chernyatiev},
     title = {Description of {Normal} {Bases} of {Boundary} {Algebras} and {Factor} {Languages} of {Slow} {Growth}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {181--185},
     publisher = {mathdoc},
     volume = {101},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a2/}
}
TY  - JOUR
AU  - A. Ya. Belov
AU  - A. L. Chernyatiev
TI  - Description of Normal Bases of Boundary Algebras and Factor Languages of Slow Growth
JO  - Matematičeskie zametki
PY  - 2017
SP  - 181
EP  - 185
VL  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a2/
LA  - ru
ID  - MZM_2017_101_2_a2
ER  - 
%0 Journal Article
%A A. Ya. Belov
%A A. L. Chernyatiev
%T Description of Normal Bases of Boundary Algebras and Factor Languages of Slow Growth
%J Matematičeskie zametki
%D 2017
%P 181-185
%V 101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a2/
%G ru
%F MZM_2017_101_2_a2
A. Ya. Belov; A. L. Chernyatiev. Description of Normal Bases of Boundary Algebras and Factor Languages of Slow Growth. Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 181-185. http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a2/