Description of Normal Bases of Boundary Algebras and Factor Languages of Slow Growth
Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 181-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an algebra $A$, denote by $V_A(n)$ the dimension of the vector space spanned by the monomials whose length does not exceed $n$. Let $T_A(n)=V_A(n)-V_A(n-1)$. An algebra is said to be boundary if $T_A(n)-n\mathrm{const}$. In the paper, the normal bases are described for algebras of slow growth or for boundary algebras. Let $\mathscr L$ be a factor language over a finite alphabet $\mathscr A$. The growth function $T_{\mathscr L}(n)$ is the number of subwords of length $n$ in $\mathscr L$. We also describe the factor languages such that $T_{\mathscr L}(n)\le n+\mathrm{const}$.
Keywords: normal basis, Sturm sequence, growth function, factor language.
Mots-clés : monomial algebra
@article{MZM_2017_101_2_a2,
     author = {A. Ya. Belov and A. L. Chernyatiev},
     title = {Description of {Normal} {Bases} of {Boundary} {Algebras} and {Factor} {Languages} of {Slow} {Growth}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {181--185},
     publisher = {mathdoc},
     volume = {101},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a2/}
}
TY  - JOUR
AU  - A. Ya. Belov
AU  - A. L. Chernyatiev
TI  - Description of Normal Bases of Boundary Algebras and Factor Languages of Slow Growth
JO  - Matematičeskie zametki
PY  - 2017
SP  - 181
EP  - 185
VL  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a2/
LA  - ru
ID  - MZM_2017_101_2_a2
ER  - 
%0 Journal Article
%A A. Ya. Belov
%A A. L. Chernyatiev
%T Description of Normal Bases of Boundary Algebras and Factor Languages of Slow Growth
%J Matematičeskie zametki
%D 2017
%P 181-185
%V 101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a2/
%G ru
%F MZM_2017_101_2_a2
A. Ya. Belov; A. L. Chernyatiev. Description of Normal Bases of Boundary Algebras and Factor Languages of Slow Growth. Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 181-185. http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a2/

[1] A. Ya. Belov, V. V. Borisenko, V. N. Latyshev, “Monomialnye algebry”, Algebra – 4, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 26, VINITI, M., 2002, 35–214 | MR | Zbl

[2] M. Lothaire, “Combinatorics on Words”, Encyclopedia of Math. Appl., 17, Addison-Wesley, Reading, MA, 1983 | MR | Zbl

[3] G. M. Bergman, A Note on Growth Functions of Algebras and Semigroups, Research Note, University of California, Berkeley, CA, 1978

[4] J. Berstel, P. Séébold, “Sturmian words”, Algebraic Combinatorics on Words, Encyclopedia of Math. Appl., 90, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[5] A. Ya. Belov, A. L. Chernyatev, “Slova medlennogo rosta i perekladyvaniya otrezkov”, UMN, 63:1 (379) (2008), 159–160 | DOI | MR | Zbl

[6] A. L. Chernyatev, “Slova s minimalnoi funktsiei rosta”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2008, no. 6, 42–44 | MR | Zbl