On Fully Inert Subgroups of Completely Decomposable Groups
Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 302-312.

Voir la notice de l'article provenant de la source Math-Net.Ru

The completely decomposable torsion-free Abelian groups with finitely many homogeneous components for which every fully inert subgroup is commensurable with a fully invariant subgroup are described.
Keywords: fully inert subgroup, fully invariant subgroup, commensurable subgroups, completely decomposable group, index of a subgroup.
@article{MZM_2017_101_2_a12,
     author = {A. R. Chekhlov},
     title = {On {Fully} {Inert} {Subgroups} of {Completely} {Decomposable} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {302--312},
     publisher = {mathdoc},
     volume = {101},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a12/}
}
TY  - JOUR
AU  - A. R. Chekhlov
TI  - On Fully Inert Subgroups of Completely Decomposable Groups
JO  - Matematičeskie zametki
PY  - 2017
SP  - 302
EP  - 312
VL  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a12/
LA  - ru
ID  - MZM_2017_101_2_a12
ER  - 
%0 Journal Article
%A A. R. Chekhlov
%T On Fully Inert Subgroups of Completely Decomposable Groups
%J Matematičeskie zametki
%D 2017
%P 302-312
%V 101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a12/
%G ru
%F MZM_2017_101_2_a12
A. R. Chekhlov. On Fully Inert Subgroups of Completely Decomposable Groups. Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 302-312. http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a12/

[1] D. Dikranjan, A. Giordano Bruno, L. Salce, S. Virili, “Fully inert subgroups of divisible Abelian groups”, J. Group Theory, 16:6 (2013), 915–939 | DOI | MR | Zbl

[2] D. Dikranjan, L. Salce, P. Zanardo, “Fully inert subgroups of free Abelian groups”, Period. Math. Hungar, 69:1 (2014), 69–78 | DOI | MR | Zbl

[3] B. Goldsmith, L. Salce, P. Zanardo, “Fully inert subgroups of Abelian $p$-groups”, J. Algebra, 419 (2014), 332–349 | DOI | MR | Zbl

[4] U. Dardano, S. Rinauro, “Inertial automorphisms of an Abelian group”, Rend. Sem. Mat. Univ. Padova, 127 (2012), 213–233 | DOI | MR | Zbl

[5] U. Dardano, S. Rinauro, “On the ring of inertial endomorphisms of an Abelian group”, Ric. Mat., 63, Suppl. 1 (2014), 103–115 | DOI | MR | Zbl

[6] V. V. Belyaev, “Inertnye podgruppy v beskonechnykh prostykh gruppakh”, Sib. matem. zhurn., 34:4 (1993), 17–23 | MR | Zbl

[7] V. V. Belyaev, “Lokalno konechnye gruppy s konechnoi neotdelimoi podgruppoi”, Sib. matem. zhurn., 34:2 (1993), 23–41 | MR | Zbl

[8] V. V. Belyaev, M. Kuzucuoğlu, E. Seçkin, “Totally inert groups”, Rend. Sem. Mat. Univ. Padova, 102 (1999), 151–156 | MR | Zbl

[9] M. R. Dixon, M. J. Evans, A. Tortora, “On totally inert simple groups”, Cent. Eur. J. Math., 8:1 (2010), 22–25 | DOI | MR | Zbl

[10] A. R. Chekhlov, “Vpolne inertnye podgruppy vpolne razlozhimykh grupp konechnogo ranga i ikh soizmerimost”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2016, no. 3 (41), 42–50 | DOI

[11] L. Fuks, Beskonechnye abelevy gruppy, T. 2, Mir, M., 1977 | MR | Zbl

[12] P. A. Krylov, A. V. Mikhalev, A. A. Tuganbaev, Abelevy gruppy i ikh koltsa endomorfizmov, Faktorial Press, M., 2007

[13] P. A. Krylov, E. I. Podberezina, “Gruppa $\operatorname{Hom}(A,B)$ kak artinov $\operatorname{E}(B)$- ili $\operatorname{E}(A)$-modul”, Fundament. i prikl. matem., 13:3 (2007), 81–96 | MR | Zbl

[14] G. Călugăreanu, “Strongly invariant subgroups”, Glasg. Math. J., 57:2 (2015), 431–443 | DOI | MR | Zbl

[15] A. R. Chekhlov, P. V. Danchev, “On Abelian groups having all proper fully invariant subgroups isomorphic”, Comm. Algebra, 43:12 (2015), 5059–5073 | DOI | MR | Zbl