Sets with at Most Two-Valued Metric Projection on a~Normed Plane
Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 286-301.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study sets with at most two-valued metric projection in Banach spaces. We show that a two-dimensional Banach space is smooth if and only if every point of the convex hull of an arbitrary closed set with at most two-valued metric projection lies on a segment with endpoints in that set.
Keywords: metric projection, set with at most two-valued metric projection.
@article{MZM_2017_101_2_a11,
     author = {A. A. Flerov},
     title = {Sets with at {Most} {Two-Valued} {Metric} {Projection} on {a~Normed} {Plane}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {286--301},
     publisher = {mathdoc},
     volume = {101},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a11/}
}
TY  - JOUR
AU  - A. A. Flerov
TI  - Sets with at Most Two-Valued Metric Projection on a~Normed Plane
JO  - Matematičeskie zametki
PY  - 2017
SP  - 286
EP  - 301
VL  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a11/
LA  - ru
ID  - MZM_2017_101_2_a11
ER  - 
%0 Journal Article
%A A. A. Flerov
%T Sets with at Most Two-Valued Metric Projection on a~Normed Plane
%J Matematičeskie zametki
%D 2017
%P 286-301
%V 101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a11/
%G ru
%F MZM_2017_101_2_a11
A. A. Flerov. Sets with at Most Two-Valued Metric Projection on a~Normed Plane. Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 286-301. http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a11/

[1] N. V. Efimov, S. B. Stechkin, “Nekotorye svoistva chebyshevskikh mnozhestv”, Dokl. AN SSSR, 118:1 (1958), 17–19 | Zbl

[2] Dzh. Distel, Geometriya banakhovykh prostranstv, Vischa shkola, Kiev, 1980 | MR | Zbl

[3] L. N. H. Bunt, Bijdrage tot de theorie der convexe puntverzamelingen, Proefschrifft Groningen, Amsterdam, 1934 | Zbl

[4] Th. Motzkin, “Sur quelques propriétés caracteristiques des ensembles convexes”, Rend. Accad. d. L. Roma (6), 21 (1935), 562–567 | Zbl

[5] N. V. Efimov, S. B. Stechkin, “Opornye svoistva mnozhestv v banakhovykh prostranstvakh i chebyshevskie mnozhestva”, Dokl. AN SSSR, 127:2 (1959), 254–257 | Zbl

[6] V. L. Klee, Jr., “Convex bodies and periodic homeomorphisms in Hilbert space”, Trans. Amer. Math. Soc., 74 (1953), 10–43 | DOI | MR | Zbl

[7] A. A. Flerov, “O mnozhestvakh s ne bolee chem dvuznachnoi metricheskoi proektsiei na ploskosti”, Vestn. Mosk. un-ta. Cer. 1. Matem., mekh., 2013, no. 6, 14–19 | Zbl

[8] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, 2-e izd., ispravlennoe i dopolnennoe, Fizmatlit, M., 2007 | Zbl

[9] I. Bárány, R. Karasev, “Notes about the Carathéodory number”, Discrete Comput. Geom., 48:3 (2012), 783–792 | DOI | MR | Zbl

[10] L. P. Vlasov, “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 28:6 (174) (1973), 3–66 | MR | Zbl

[11] A. R. Alimov, “Vsyakoe li chebyshevskoe mnozhestvo vypuklo?”, Matem. prosv., ser. 3, 2, MTsNMO, M., 1998, 155–172

[12] W. Fenchel, “Über Krümmung und Windung geschlossener Raumkurven”, Math. Ann., 101:1 (1929), 238–252 | DOI | MR | Zbl

[13] O. Hanner, H. R̊adström, “A generalization of a theorem of Fenchel”, Proc. Amer. Math. Soc., 2 (1951), 589–593 | DOI | MR | Zbl

[14] H. Martini, K. J. Swanepoel, G. Weiß, “The geometry of Minkowski spaces–a survey. I”, Expo. Math., 19:2 (2001), 97–142 | DOI | MR | Zbl