Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_101_2_a11, author = {A. A. Flerov}, title = {Sets with at {Most} {Two-Valued} {Metric} {Projection} on {a~Normed} {Plane}}, journal = {Matemati\v{c}eskie zametki}, pages = {286--301}, publisher = {mathdoc}, volume = {101}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a11/} }
A. A. Flerov. Sets with at Most Two-Valued Metric Projection on a~Normed Plane. Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 286-301. http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a11/
[1] N. V. Efimov, S. B. Stechkin, “Nekotorye svoistva chebyshevskikh mnozhestv”, Dokl. AN SSSR, 118:1 (1958), 17–19 | Zbl
[2] Dzh. Distel, Geometriya banakhovykh prostranstv, Vischa shkola, Kiev, 1980 | MR | Zbl
[3] L. N. H. Bunt, Bijdrage tot de theorie der convexe puntverzamelingen, Proefschrifft Groningen, Amsterdam, 1934 | Zbl
[4] Th. Motzkin, “Sur quelques propriétés caracteristiques des ensembles convexes”, Rend. Accad. d. L. Roma (6), 21 (1935), 562–567 | Zbl
[5] N. V. Efimov, S. B. Stechkin, “Opornye svoistva mnozhestv v banakhovykh prostranstvakh i chebyshevskie mnozhestva”, Dokl. AN SSSR, 127:2 (1959), 254–257 | Zbl
[6] V. L. Klee, Jr., “Convex bodies and periodic homeomorphisms in Hilbert space”, Trans. Amer. Math. Soc., 74 (1953), 10–43 | DOI | MR | Zbl
[7] A. A. Flerov, “O mnozhestvakh s ne bolee chem dvuznachnoi metricheskoi proektsiei na ploskosti”, Vestn. Mosk. un-ta. Cer. 1. Matem., mekh., 2013, no. 6, 14–19 | Zbl
[8] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, 2-e izd., ispravlennoe i dopolnennoe, Fizmatlit, M., 2007 | Zbl
[9] I. Bárány, R. Karasev, “Notes about the Carathéodory number”, Discrete Comput. Geom., 48:3 (2012), 783–792 | DOI | MR | Zbl
[10] L. P. Vlasov, “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 28:6 (174) (1973), 3–66 | MR | Zbl
[11] A. R. Alimov, “Vsyakoe li chebyshevskoe mnozhestvo vypuklo?”, Matem. prosv., ser. 3, 2, MTsNMO, M., 1998, 155–172
[12] W. Fenchel, “Über Krümmung und Windung geschlossener Raumkurven”, Math. Ann., 101:1 (1929), 238–252 | DOI | MR | Zbl
[13] O. Hanner, H. R̊adström, “A generalization of a theorem of Fenchel”, Proc. Amer. Math. Soc., 2 (1951), 589–593 | DOI | MR | Zbl
[14] H. Martini, K. J. Swanepoel, G. Weiß, “The geometry of Minkowski spaces–a survey. I”, Expo. Math., 19:2 (2001), 97–142 | DOI | MR | Zbl