Sets with at Most Two-Valued Metric Projection on a~Normed Plane
Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 286-301

Voir la notice de l'article provenant de la source Math-Net.Ru

We study sets with at most two-valued metric projection in Banach spaces. We show that a two-dimensional Banach space is smooth if and only if every point of the convex hull of an arbitrary closed set with at most two-valued metric projection lies on a segment with endpoints in that set.
Keywords: metric projection, set with at most two-valued metric projection.
@article{MZM_2017_101_2_a11,
     author = {A. A. Flerov},
     title = {Sets with at {Most} {Two-Valued} {Metric} {Projection} on {a~Normed} {Plane}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {286--301},
     publisher = {mathdoc},
     volume = {101},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a11/}
}
TY  - JOUR
AU  - A. A. Flerov
TI  - Sets with at Most Two-Valued Metric Projection on a~Normed Plane
JO  - Matematičeskie zametki
PY  - 2017
SP  - 286
EP  - 301
VL  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a11/
LA  - ru
ID  - MZM_2017_101_2_a11
ER  - 
%0 Journal Article
%A A. A. Flerov
%T Sets with at Most Two-Valued Metric Projection on a~Normed Plane
%J Matematičeskie zametki
%D 2017
%P 286-301
%V 101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a11/
%G ru
%F MZM_2017_101_2_a11
A. A. Flerov. Sets with at Most Two-Valued Metric Projection on a~Normed Plane. Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 286-301. http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a11/