Mean Oscillation Modulus and Number-Theoretic Grid Quadrature Formulas
Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 262-285

Voir la notice de l'article provenant de la source Math-Net.Ru

For arbitrary Riemann integrable functions $f$ and irrational numbers $\theta \in (0,1)$, we obtain estimates of the error $R_n(f,\theta)$ of the quadrature formula $$ \int_{0}^{1}f(x)\,dx=\frac{1}{n}\sum_{k=1}^nf(\{k\theta\})- R_n(f,\theta) $$ in which $\{k\theta\}$ is the fractional part of the number $k\theta$.
Mots-clés : quadrature formula
Keywords: continued fraction, type of an irrational number, mean oscillation modulus.
@article{MZM_2017_101_2_a10,
     author = {E. A. Sevast'yanov},
     title = {Mean {Oscillation} {Modulus} and {Number-Theoretic} {Grid} {Quadrature} {Formulas}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {262--285},
     publisher = {mathdoc},
     volume = {101},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a10/}
}
TY  - JOUR
AU  - E. A. Sevast'yanov
TI  - Mean Oscillation Modulus and Number-Theoretic Grid Quadrature Formulas
JO  - Matematičeskie zametki
PY  - 2017
SP  - 262
EP  - 285
VL  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a10/
LA  - ru
ID  - MZM_2017_101_2_a10
ER  - 
%0 Journal Article
%A E. A. Sevast'yanov
%T Mean Oscillation Modulus and Number-Theoretic Grid Quadrature Formulas
%J Matematičeskie zametki
%D 2017
%P 262-285
%V 101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a10/
%G ru
%F MZM_2017_101_2_a10
E. A. Sevast'yanov. Mean Oscillation Modulus and Number-Theoretic Grid Quadrature Formulas. Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 262-285. http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a10/