Mean Oscillation Modulus and Number-Theoretic Grid Quadrature Formulas
Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 262-285.

Voir la notice de l'article provenant de la source Math-Net.Ru

For arbitrary Riemann integrable functions $f$ and irrational numbers $\theta \in (0,1)$, we obtain estimates of the error $R_n(f,\theta)$ of the quadrature formula $$ \int_{0}^{1}f(x)\,dx=\frac{1}{n}\sum_{k=1}^nf(\{k\theta\})- R_n(f,\theta) $$ in which $\{k\theta\}$ is the fractional part of the number $k\theta$.
Mots-clés : quadrature formula
Keywords: continued fraction, type of an irrational number, mean oscillation modulus.
@article{MZM_2017_101_2_a10,
     author = {E. A. Sevast'yanov},
     title = {Mean {Oscillation} {Modulus} and {Number-Theoretic} {Grid} {Quadrature} {Formulas}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {262--285},
     publisher = {mathdoc},
     volume = {101},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a10/}
}
TY  - JOUR
AU  - E. A. Sevast'yanov
TI  - Mean Oscillation Modulus and Number-Theoretic Grid Quadrature Formulas
JO  - Matematičeskie zametki
PY  - 2017
SP  - 262
EP  - 285
VL  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a10/
LA  - ru
ID  - MZM_2017_101_2_a10
ER  - 
%0 Journal Article
%A E. A. Sevast'yanov
%T Mean Oscillation Modulus and Number-Theoretic Grid Quadrature Formulas
%J Matematičeskie zametki
%D 2017
%P 262-285
%V 101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a10/
%G ru
%F MZM_2017_101_2_a10
E. A. Sevast'yanov. Mean Oscillation Modulus and Number-Theoretic Grid Quadrature Formulas. Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 262-285. http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a10/

[1] L. Keipers, G. Niderreiter, Ravnomernoe raspredelenie posledovatelnostei, Nauka, M., 1985 | MR | Zbl

[2] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963 | MR | Zbl

[3] H. Niederreiter, “Methods for estimating discrepancy”, Applications of Number Theory to Numerical Analysis, Academic Press, New York, 1972, 203–236 | MR | Zbl

[4] J. F. Koksma, “Een algemeen stelling uit de theorie der gelijkmatige verdeeling modulo 1”, Mathematica, Zutphen. B, 11 (1942), 89–97 | MR

[5] E. Hecke, “Über analytische Funktionen und die Verteilung von Zahlen mod Eins”, Abh. Math. Sem. Univ. Hamburg, 1:1 (1922), 54–76 | DOI | MR

[6] A. Ostrowski, “Bemerkungen zur Theorie der Diophantischen Approximationen”, Abh. Math. Sem., 1 (1922), 77–98 | DOI | MR | Zbl

[7] H. Niederreiter, “Application of diophantine approximations to numerical integration”, Diophantive Approximation and its Applications, Academic Press, New York, 1973, 129–199 | MR | Zbl

[8] E. P. Dolzhenko, E. A. Sevastyanov, “O priblizheniyakh funktsii v khausdorfovoi metrike posredstvom kusochno monotonnykh (v chastnosti, ratsionalnykh) funktsii”, Matem. sb., 101 (143):4 (12) (1976), 508–541 | MR | Zbl

[9] B. Sendov, V. Popov, Usrednennye moduli gladkosti, Mir, M., 1988 | MR | Zbl

[10] E. A. Sevastyanov, I. Yu. Yakupov, “Ob otsenkakh usrednennykh summ drobnykh dolei”, Matem. zametki, 99:2 (2016), 298–308 | DOI | MR

[11] S. Leng, Vvedenie v teoriyu diofantovykh priblizhenii, Mir, M., 1970 | MR | Zbl

[12] A. Zigmund, Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR | Zbl