Normed Space Structure on a Busemann $G$-Space of Cone Type
Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 169-180

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that any Busemann nonpositively curved $G$-space of cone type is isometric to a finite-dimensional normed space with strictly convex norm.
Keywords: Busemann $G$-space
Mots-clés : tangent cone.
@article{MZM_2017_101_2_a1,
     author = {P. D. Andreev},
     title = {Normed {Space} {Structure} on a {Busemann} $G${-Space} of {Cone} {Type}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {169--180},
     publisher = {mathdoc},
     volume = {101},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a1/}
}
TY  - JOUR
AU  - P. D. Andreev
TI  - Normed Space Structure on a Busemann $G$-Space of Cone Type
JO  - Matematičeskie zametki
PY  - 2017
SP  - 169
EP  - 180
VL  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a1/
LA  - ru
ID  - MZM_2017_101_2_a1
ER  - 
%0 Journal Article
%A P. D. Andreev
%T Normed Space Structure on a Busemann $G$-Space of Cone Type
%J Matematičeskie zametki
%D 2017
%P 169-180
%V 101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a1/
%G ru
%F MZM_2017_101_2_a1
P. D. Andreev. Normed Space Structure on a Busemann $G$-Space of Cone Type. Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 169-180. http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a1/