Normed Space Structure on a Busemann $G$-Space of Cone Type
Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 169-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that any Busemann nonpositively curved $G$-space of cone type is isometric to a finite-dimensional normed space with strictly convex norm.
Keywords: Busemann $G$-space
Mots-clés : tangent cone.
@article{MZM_2017_101_2_a1,
     author = {P. D. Andreev},
     title = {Normed {Space} {Structure} on a {Busemann} $G${-Space} of {Cone} {Type}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {169--180},
     publisher = {mathdoc},
     volume = {101},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a1/}
}
TY  - JOUR
AU  - P. D. Andreev
TI  - Normed Space Structure on a Busemann $G$-Space of Cone Type
JO  - Matematičeskie zametki
PY  - 2017
SP  - 169
EP  - 180
VL  - 101
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a1/
LA  - ru
ID  - MZM_2017_101_2_a1
ER  - 
%0 Journal Article
%A P. D. Andreev
%T Normed Space Structure on a Busemann $G$-Space of Cone Type
%J Matematičeskie zametki
%D 2017
%P 169-180
%V 101
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a1/
%G ru
%F MZM_2017_101_2_a1
P. D. Andreev. Normed Space Structure on a Busemann $G$-Space of Cone Type. Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 169-180. http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a1/

[1] H. Busemann, Metric Methods in Finsler Spaces and in the Foundations of Geometry, Ann. of Math. Stud., 8, Princeton Univ. Press, Princeton, NJ, 1942 | MR | Zbl

[2] H. Busemann, “On spaces in which two points determine a geodesic”, Trans. Amer. Math. Soc., 54 (1943), 171–184 | DOI | MR | Zbl

[3] G. Buzeman, Geometriya geodezicheskikh, Fizmatlit, M., 1962 | Zbl

[4] P. D. Andreev, “Dokazatelstvo gipotezy Buzemana dlya $G$-prostranstv nepolozhitelnoi krivizny”, Algebra i analiz, 26:2 (2014), 1–20 | MR

[5] H. Busemann, “Spaces with non-positive curvature”, Acta Math., 48 (1947), 259–310 | MR | Zbl

[6] W. Rinow, Die innere Geometrie der metrischen Räume, Grundlehren Math. Wiss., 105, Springer-Verlag, Berlin, 1961 | MR | Zbl

[7] B. H. Bowditch, “Minkowskian subspaces of non-positively curved metric spaces”, Bull. London Math. Soc., 27:6 (1995), 575–584 | DOI | MR | Zbl

[8] P. D. Andreev, “Zadacha A. D. Aleksandrova dlya prostranstv nepolozhitelnoi krivizny v smysle Buzemana”, Izv. vuzov. Matem., 2010, no. 9, 10–35 | MR | Zbl

[9] Ph. K. Hotchkiss, “The boundary of Busemann space”, Proc. Amer. Math. Soc., 125:7 (1997), 1903–1912 | DOI | MR | Zbl