Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_101_2_a1, author = {P. D. Andreev}, title = {Normed {Space} {Structure} on a {Busemann} $G${-Space} of {Cone} {Type}}, journal = {Matemati\v{c}eskie zametki}, pages = {169--180}, publisher = {mathdoc}, volume = {101}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a1/} }
P. D. Andreev. Normed Space Structure on a Busemann $G$-Space of Cone Type. Matematičeskie zametki, Tome 101 (2017) no. 2, pp. 169-180. http://geodesic.mathdoc.fr/item/MZM_2017_101_2_a1/
[1] H. Busemann, Metric Methods in Finsler Spaces and in the Foundations of Geometry, Ann. of Math. Stud., 8, Princeton Univ. Press, Princeton, NJ, 1942 | MR | Zbl
[2] H. Busemann, “On spaces in which two points determine a geodesic”, Trans. Amer. Math. Soc., 54 (1943), 171–184 | DOI | MR | Zbl
[3] G. Buzeman, Geometriya geodezicheskikh, Fizmatlit, M., 1962 | Zbl
[4] P. D. Andreev, “Dokazatelstvo gipotezy Buzemana dlya $G$-prostranstv nepolozhitelnoi krivizny”, Algebra i analiz, 26:2 (2014), 1–20 | MR
[5] H. Busemann, “Spaces with non-positive curvature”, Acta Math., 48 (1947), 259–310 | MR | Zbl
[6] W. Rinow, Die innere Geometrie der metrischen Räume, Grundlehren Math. Wiss., 105, Springer-Verlag, Berlin, 1961 | MR | Zbl
[7] B. H. Bowditch, “Minkowskian subspaces of non-positively curved metric spaces”, Bull. London Math. Soc., 27:6 (1995), 575–584 | DOI | MR | Zbl
[8] P. D. Andreev, “Zadacha A. D. Aleksandrova dlya prostranstv nepolozhitelnoi krivizny v smysle Buzemana”, Izv. vuzov. Matem., 2010, no. 9, 10–35 | MR | Zbl
[9] Ph. K. Hotchkiss, “The boundary of Busemann space”, Proc. Amer. Math. Soc., 125:7 (1997), 1903–1912 | DOI | MR | Zbl