The Product of Octahedra is Badly Approximated in the $\ell_{2,1}$-Metric
Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 85-90

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the Cartesian product of octahedra $B_{1,\infty}^{n,m}=B_1^n\times \dots\times B_1^n$ ($m$ factors) is poorly approximated by spaces of half dimension in the mixed norm: $d_{N/2}(B_{1,\infty}^{n,m},\ell_{2,1}^{n,m})\ge cm$, $N=mn$. As a corollary, we find the order of linear widths of the Hölder–Nikolskii classes $H^r_p(\mathbb T^d)$ in the metric of $L_q$ in certain domains of variation of the parameters $(p,q)$.
Keywords: Kolmogorov width, vector balancing.
@article{MZM_2017_101_1_a6,
     author = {Yu. V. Malykhin and K. S. Ryutin},
     title = {The {Product} of {Octahedra} is {Badly} {Approximated} in the $\ell_{2,1}${-Metric}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {85--90},
     publisher = {mathdoc},
     volume = {101},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a6/}
}
TY  - JOUR
AU  - Yu. V. Malykhin
AU  - K. S. Ryutin
TI  - The Product of Octahedra is Badly Approximated in the $\ell_{2,1}$-Metric
JO  - Matematičeskie zametki
PY  - 2017
SP  - 85
EP  - 90
VL  - 101
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a6/
LA  - ru
ID  - MZM_2017_101_1_a6
ER  - 
%0 Journal Article
%A Yu. V. Malykhin
%A K. S. Ryutin
%T The Product of Octahedra is Badly Approximated in the $\ell_{2,1}$-Metric
%J Matematičeskie zametki
%D 2017
%P 85-90
%V 101
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a6/
%G ru
%F MZM_2017_101_1_a6
Yu. V. Malykhin; K. S. Ryutin. The Product of Octahedra is Badly Approximated in the $\ell_{2,1}$-Metric. Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 85-90. http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a6/