Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_101_1_a6, author = {Yu. V. Malykhin and K. S. Ryutin}, title = {The {Product} of {Octahedra} is {Badly} {Approximated} in the $\ell_{2,1}${-Metric}}, journal = {Matemati\v{c}eskie zametki}, pages = {85--90}, publisher = {mathdoc}, volume = {101}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a6/} }
TY - JOUR AU - Yu. V. Malykhin AU - K. S. Ryutin TI - The Product of Octahedra is Badly Approximated in the $\ell_{2,1}$-Metric JO - Matematičeskie zametki PY - 2017 SP - 85 EP - 90 VL - 101 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a6/ LA - ru ID - MZM_2017_101_1_a6 ER -
Yu. V. Malykhin; K. S. Ryutin. The Product of Octahedra is Badly Approximated in the $\ell_{2,1}$-Metric. Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 85-90. http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a6/
[1] A. D. Ioffe, V. M. Tikhomirov, “Dvoistvennost vypuklykh funktsii i ekstremalnye zadachi”, UMN, 23:6 (144) (1968), 51–116 | MR | Zbl
[2] G. G. Lorentz, M. von Golitschek, Yu. Makovoz, Constructive Approximation. Advanced Problems, Grundlehren Math. Wiss., 304, Springer-Verlag, Berlin, 1996 | MR | Zbl
[3] E. M. Galeev, “Poperechniki po Kolmogorovu klassov periodicheskikh funktsii odnoi i neskolkikh peremennykh”, Izv. AN SSSR. Ser. matem., 54:2 (1990), 418–430 | MR | Zbl
[4] A. D. Izaak, “Poperechniki po Kolmogorovu v konechnomernykh prostranstvakh so smeshannoi normoi”, Matem. zametki, 55:1 (1994), 43–52 | MR | Zbl
[5] E. D. Gluskin, “Peresecheniya kuba s oktaedrom plokho approksimiruyutsya podprostranstvami maloi razmernosti”, Priblizhenie funktsii spetsialnymi klassami operatorov, Vologodskii gos. ped. in-t, Vologda, 1987, 35–41 | MR | Zbl
[6] E. M. Galeev, “Lineinye poperechniki klassov Geldera–Nikolskogo periodicheskikh funktsii mnogikh peremennykh”, Matem. zametki, 59:2 (1996), 189–199 | DOI | MR | Zbl
[7] A. D. Izaak, “Poperechniki klassov Geldera–Nikolskogo i konechnomernykh mnozhestv v prostranstvakh so smeshannoi normoi”, Matem. zametki, 59:3 (1996), 459–461 | DOI | MR | Zbl
[8] E. D. Gluskin, “Ekstremalnye svoistva ortogonalnykh parallelepipedov i ikh prilozheniya k geometrii banakhovykh prostranstv”, Matem. sb., 136 (178):1 (5) (1988), 85–96 | MR | Zbl
[9] B. S. Kashin, “Ob odnom izometricheskom operatore v $L^2(0,1)$”, C. R. Acad. Bulgare Sci., 38:12 (1985), 1613–1615 | MR | Zbl
[10] M. A. Lifshits, Gaussian Random Functions, Math. Appl., 322, Kluwer Acad. Publ., Dordrecht, 1995 | MR | Zbl
[11] R. Latala, K. Oleszkiewicz, “Gaussian measures of dilatations of convex symmetric sets”, Ann. Probab., 27:4 (1999), 1922–1938 | MR | Zbl
[12] T. Royen, “A simple proof of the gaussian correlation conjecture extended to some multivariate gamma distributions”, Far East J. Theor. Stat., 48:2 (2014), 139–145 | MR | Zbl
[13] G. Hargé, “A particular case of correlation inequality for the Gaussian measure”, Ann. Probab., 27:4 (1999), 1939–1951 | DOI | MR | Zbl
[14] A. Giannopoulos, “On some vector balancing problems”, Studia Math., 122:3 (1997), 225–234 | MR | Zbl