The Product of Octahedra is Badly Approximated in the $\ell_{2,1}$-Metric
Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 85-90
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the Cartesian product of octahedra $B_{1,\infty}^{n,m}=B_1^n\times \dots\times B_1^n$ ($m$ factors) is poorly approximated by spaces of half dimension in the mixed norm: $d_{N/2}(B_{1,\infty}^{n,m},\ell_{2,1}^{n,m})\ge cm$, $N=mn$. As a corollary, we find the order of linear widths of the Hölder–Nikolskii classes $H^r_p(\mathbb T^d)$ in the metric of $L_q$ in certain domains of variation of the parameters $(p,q)$.
Keywords:
Kolmogorov width, vector balancing.
@article{MZM_2017_101_1_a6,
author = {Yu. V. Malykhin and K. S. Ryutin},
title = {The {Product} of {Octahedra} is {Badly} {Approximated} in the $\ell_{2,1}${-Metric}},
journal = {Matemati\v{c}eskie zametki},
pages = {85--90},
publisher = {mathdoc},
volume = {101},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a6/}
}
TY - JOUR
AU - Yu. V. Malykhin
AU - K. S. Ryutin
TI - The Product of Octahedra is Badly Approximated in the $\ell_{2,1}$-Metric
JO - Matematičeskie zametki
PY - 2017
SP - 85
EP - 90
VL - 101
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a6/
LA - ru
ID - MZM_2017_101_1_a6
ER -
Yu. V. Malykhin; K. S. Ryutin. The Product of Octahedra is Badly Approximated in the $\ell_{2,1}$-Metric. Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 85-90. http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a6/