Existence and Stability of the Relaxation Cycle in a Mathematical Repressilator Model
Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 58-76
Voir la notice de l'article provenant de la source Math-Net.Ru
The three-dimensional nonlinear system of ordinary differential equations modeling the functioning of the simplest oscillatory genetic network, the so-called repressilator, is considered. The existence, asymptotics, and stability of the relaxation periodic motion in this system are studied.
Keywords:
repressilator, genetic oscillator, relaxation cycle, stability, asymptotics.
@article{MZM_2017_101_1_a4,
author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
title = {Existence and {Stability} of the {Relaxation} {Cycle} in a {Mathematical} {Repressilator} {Model}},
journal = {Matemati\v{c}eskie zametki},
pages = {58--76},
publisher = {mathdoc},
volume = {101},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a4/}
}
TY - JOUR AU - S. D. Glyzin AU - A. Yu. Kolesov AU - N. Kh. Rozov TI - Existence and Stability of the Relaxation Cycle in a Mathematical Repressilator Model JO - Matematičeskie zametki PY - 2017 SP - 58 EP - 76 VL - 101 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a4/ LA - ru ID - MZM_2017_101_1_a4 ER -
%0 Journal Article %A S. D. Glyzin %A A. Yu. Kolesov %A N. Kh. Rozov %T Existence and Stability of the Relaxation Cycle in a Mathematical Repressilator Model %J Matematičeskie zametki %D 2017 %P 58-76 %V 101 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a4/ %G ru %F MZM_2017_101_1_a4
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Existence and Stability of the Relaxation Cycle in a Mathematical Repressilator Model. Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 58-76. http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a4/