Existence and Stability of the Relaxation Cycle in a Mathematical Repressilator Model
Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 58-76

Voir la notice de l'article provenant de la source Math-Net.Ru

The three-dimensional nonlinear system of ordinary differential equations modeling the functioning of the simplest oscillatory genetic network, the so-called repressilator, is considered. The existence, asymptotics, and stability of the relaxation periodic motion in this system are studied.
Keywords: repressilator, genetic oscillator, relaxation cycle, stability, asymptotics.
@article{MZM_2017_101_1_a4,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {Existence and {Stability} of the {Relaxation} {Cycle} in a {Mathematical} {Repressilator} {Model}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {58--76},
     publisher = {mathdoc},
     volume = {101},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a4/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Existence and Stability of the Relaxation Cycle in a Mathematical Repressilator Model
JO  - Matematičeskie zametki
PY  - 2017
SP  - 58
EP  - 76
VL  - 101
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a4/
LA  - ru
ID  - MZM_2017_101_1_a4
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Existence and Stability of the Relaxation Cycle in a Mathematical Repressilator Model
%J Matematičeskie zametki
%D 2017
%P 58-76
%V 101
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a4/
%G ru
%F MZM_2017_101_1_a4
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Existence and Stability of the Relaxation Cycle in a Mathematical Repressilator Model. Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 58-76. http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a4/