Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_101_1_a11, author = {O. A. Sultanov}, title = {Stochastic {Stability} of a {Dynamical} {System} {Perturbed} by {White} {Noise}}, journal = {Matemati\v{c}eskie zametki}, pages = {130--139}, publisher = {mathdoc}, volume = {101}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a11/} }
O. A. Sultanov. Stochastic Stability of a Dynamical System Perturbed by White Noise. Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 130-139. http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a11/
[1] N. N. Krasovskii, Stability of Motion. Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay, Stanford Univ. Press, Stanford, 1963 | MR | Zbl
[2] L. A. Kalyakin, O. A. Sultanov, “Ustoichivost modelei avtorezonansa”, Differents. uravneniya, 49:3 (2013), 279–293 | MR | Zbl
[3] O. A. Sultanov, “Funktsii Lyapunova dlya neavtonomnykh sistem blizkikh k gamiltonovym”, Ufimsk. matem. zhurn., 2:4 (2010), 88–98 | Zbl
[4] B. Øksendal, Stochastic Differential Equations. An Introduction with Applications, Universitext, Springer-Verlag, Berlin, 1998 | MR
[5] R. Khasminskii, Stochastic Stability of Differential Equations, Stoch. Model. Appl. Probab., 66, Springer-Verlag, Berlin, 2012 | MR | Zbl
[6] I. Ya. Kats, A. A. Martynyuk, Stability and Stabilization of Nonlinear Systems with Random Structures, Stability and Control: Theory, Methods Appl., 18, Taylor and Francis, London, 2002 | MR | Zbl
[7] H. J. Kushner, Stochastic Stability and Control, Math. Sci. Eng., Academic Press, New York, 1967 | MR | Zbl
[8] X. Mao, Exponential Stability of Stochastic Differential Equations, Monogr. Textbooks in Pure Appl. Math., 182, Marcel Dekker, New York, 1994 | MR | Zbl
[9] M. I. Freidlin, A. D. Wentzell, Random Perturbations of Dynamical Systems, Grundlehren Math. Wiss., 260, Springer-Verlag, Berlin, 1998 | MR | Zbl
[10] R. Z. Khasminskii, “Ob ustoichivosti pri postoyanno deistvuyuschikh sluchainykh vozmuscheniyakh”, Teoriya peredachi informatsii. Opoznanie obrazov, Nauka, M., 1965
[11] M. M. Khapaev, Asimptoticheskie metody i ustoichivost v teorii nelineinykh kolebanii, Vysshaya shkola, M., 1988 | MR
[12] A. D. Venttsel, Kurs teorii sluchainykh protsessov, Nauka, M., 1996 | MR