Stochastic Stability of a Dynamical System Perturbed by White Noise
Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 130-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

The effect of small constantly acting random perturbations of white noise type on a dynamical system with locally stable fixed point is studied. The perturbed system is considered in the form of Itô stochastic differential equations, and it is assumed that the perturbation does not vanish at a fixed point. In this case, the trajectories of the stochastic system issuing from points near the stable fixed point exit from the neighborhood of equilibrium with probability $1$. Classes of perturbations such that the equilibrium of a deterministic system is stable in probability on an asymptotically large time interval are described.
Keywords: dynamical system, white noise, stability.
Mots-clés : perturbation
@article{MZM_2017_101_1_a11,
     author = {O. A. Sultanov},
     title = {Stochastic {Stability} of a {Dynamical} {System} {Perturbed} by {White} {Noise}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {130--139},
     publisher = {mathdoc},
     volume = {101},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a11/}
}
TY  - JOUR
AU  - O. A. Sultanov
TI  - Stochastic Stability of a Dynamical System Perturbed by White Noise
JO  - Matematičeskie zametki
PY  - 2017
SP  - 130
EP  - 139
VL  - 101
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a11/
LA  - ru
ID  - MZM_2017_101_1_a11
ER  - 
%0 Journal Article
%A O. A. Sultanov
%T Stochastic Stability of a Dynamical System Perturbed by White Noise
%J Matematičeskie zametki
%D 2017
%P 130-139
%V 101
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a11/
%G ru
%F MZM_2017_101_1_a11
O. A. Sultanov. Stochastic Stability of a Dynamical System Perturbed by White Noise. Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 130-139. http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a11/

[1] N. N. Krasovskii, Stability of Motion. Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay, Stanford Univ. Press, Stanford, 1963 | MR | Zbl

[2] L. A. Kalyakin, O. A. Sultanov, “Ustoichivost modelei avtorezonansa”, Differents. uravneniya, 49:3 (2013), 279–293 | MR | Zbl

[3] O. A. Sultanov, “Funktsii Lyapunova dlya neavtonomnykh sistem blizkikh k gamiltonovym”, Ufimsk. matem. zhurn., 2:4 (2010), 88–98 | Zbl

[4] B. Øksendal, Stochastic Differential Equations. An Introduction with Applications, Universitext, Springer-Verlag, Berlin, 1998 | MR

[5] R. Khasminskii, Stochastic Stability of Differential Equations, Stoch. Model. Appl. Probab., 66, Springer-Verlag, Berlin, 2012 | MR | Zbl

[6] I. Ya. Kats, A. A. Martynyuk, Stability and Stabilization of Nonlinear Systems with Random Structures, Stability and Control: Theory, Methods Appl., 18, Taylor and Francis, London, 2002 | MR | Zbl

[7] H. J. Kushner, Stochastic Stability and Control, Math. Sci. Eng., Academic Press, New York, 1967 | MR | Zbl

[8] X. Mao, Exponential Stability of Stochastic Differential Equations, Monogr. Textbooks in Pure Appl. Math., 182, Marcel Dekker, New York, 1994 | MR | Zbl

[9] M. I. Freidlin, A. D. Wentzell, Random Perturbations of Dynamical Systems, Grundlehren Math. Wiss., 260, Springer-Verlag, Berlin, 1998 | MR | Zbl

[10] R. Z. Khasminskii, “Ob ustoichivosti pri postoyanno deistvuyuschikh sluchainykh vozmuscheniyakh”, Teoriya peredachi informatsii. Opoznanie obrazov, Nauka, M., 1965

[11] M. M. Khapaev, Asimptoticheskie metody i ustoichivost v teorii nelineinykh kolebanii, Vysshaya shkola, M., 1988 | MR

[12] A. D. Venttsel, Kurs teorii sluchainykh protsessov, Nauka, M., 1996 | MR