On the Principle of Doubly Symmetric Kazmin Sets
Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 3-19

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the completeness of the system of analytic functions of the form $\bigcup_{k=0}^2\{[W(z\delta^k)]^{3n}\}_{n=0}^\infty$, where $n=0,1,\dots$, $k=0,1,2$, and $\delta=\exp({2\pi i}/{3})$, in $A(D)$ is solved.
Keywords: system of analytic functions, completeness problem, boundary-value problem.
@article{MZM_2017_101_1_a0,
     author = {G. I. Andriyanov},
     title = {On the {Principle} of {Doubly} {Symmetric} {Kazmin} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {101},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a0/}
}
TY  - JOUR
AU  - G. I. Andriyanov
TI  - On the Principle of Doubly Symmetric Kazmin Sets
JO  - Matematičeskie zametki
PY  - 2017
SP  - 3
EP  - 19
VL  - 101
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a0/
LA  - ru
ID  - MZM_2017_101_1_a0
ER  - 
%0 Journal Article
%A G. I. Andriyanov
%T On the Principle of Doubly Symmetric Kazmin Sets
%J Matematičeskie zametki
%D 2017
%P 3-19
%V 101
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a0/
%G ru
%F MZM_2017_101_1_a0
G. I. Andriyanov. On the Principle of Doubly Symmetric Kazmin Sets. Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a0/