On the Principle of Doubly Symmetric Kazmin Sets
Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the completeness of the system of analytic functions of the form $\bigcup_{k=0}^2\{[W(z\delta^k)]^{3n}\}_{n=0}^\infty$, where $n=0,1,\dots$, $k=0,1,2$, and $\delta=\exp({2\pi i}/{3})$, in $A(D)$ is solved.
Keywords: system of analytic functions, completeness problem, boundary-value problem.
@article{MZM_2017_101_1_a0,
     author = {G. I. Andriyanov},
     title = {On the {Principle} of {Doubly} {Symmetric} {Kazmin} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {101},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a0/}
}
TY  - JOUR
AU  - G. I. Andriyanov
TI  - On the Principle of Doubly Symmetric Kazmin Sets
JO  - Matematičeskie zametki
PY  - 2017
SP  - 3
EP  - 19
VL  - 101
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a0/
LA  - ru
ID  - MZM_2017_101_1_a0
ER  - 
%0 Journal Article
%A G. I. Andriyanov
%T On the Principle of Doubly Symmetric Kazmin Sets
%J Matematičeskie zametki
%D 2017
%P 3-19
%V 101
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a0/
%G ru
%F MZM_2017_101_1_a0
G. I. Andriyanov. On the Principle of Doubly Symmetric Kazmin Sets. Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a0/

[1] Yu. A. Kazmin, “Obschaya problema momentov v kompleksnoi oblasti”, Proceedings of the Conference on Constructive Theory of Functions (Budapest, 1969), Budapest, 1972, 225–254 | Zbl

[2] A. A. Mirolyubov, “K voprosu o polnote sistemy pokazatelnykh funktsii”, Sib. matem. zhurn., 8:1 (1967), 3–10 | Zbl

[3] Yu. A. Kazmin, “Polnota v krivolineinoi polose posledovatelnosti pokazatelnykh funktsii”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1968, no. 6, 49–63 | Zbl

[4] R. P. Boas, Jr., “A completeness theorem”, Amer. J. Math., 62:2 (1940), 312–318 | DOI | MR | Zbl

[5] R. P. Boas, Jr., “Some unigneness theorems for entire functions”, Amer. J. Math., 62:2 (1940), 319–324 | DOI | MR | Zbl

[6] G. I. Andriyanov, “Modifitsirovannaya problema momentov v kompleksnoi oblasti”, Matem. zametki, 72:6 (2002), 804–814 | DOI | MR | Zbl

[7] G. I. Andriyanov, “O polnote odnoi sistemy analiticheskikh funktsii”, Matem. zametki, 89:2 (2011), 163–177 | DOI | MR | Zbl

[8] G. I. Andriyanov, “Polnota sistemy tselykh neotritsatelnykh stepenei analiticheskikh funktsii v prostranstve $A(D)$”, Sib. matem. zhurn., 55:6 (2014), 1208–1220 | MR | Zbl

[9] Yu. A. Kazmin, “Ob odnom geometricheskom priznake polnoty”, Matem. sb., 100 (142):2 (6) (1976), 181–190 | MR | Zbl

[10] Yu. A. Kazmin, “O printsipe dvazhdy simmetrichnykh mnozhestv v teorii interpolyatsii”, Vsesoyuznyi simpozium po teorii approksimatsii funktsii v kompleksnoi oblasti, Tezisy dokladov, Ufa, 1980

[11] Yu. A. Kazmin, “K interpolyatsionnoi zadache Abelya”, Matem. zametki, 11:4 (1972), 353–364 | MR | Zbl

[12] Yu. A. Kazmin, “O netrivialnykh resheniyakh odnorodnoi zadachi”, Matem. sb., 109 (151):2 (6) (1979), 254–274 | MR | Zbl

[13] Y. A. Kaz'min, “On a theorem of G. Polya”, Anal. Math., 2:2 (1976), 99–116 | DOI | MR | Zbl

[14] L. Biberbakh, Analiticheskoe prodolzhenie, Nauka, M., 1967 | MR

[15] F. D. Gakhov, Kraevye zadachi, Nauka, M., 1977 | MR | Zbl

[16] I. I. Ibragimov, Metody interpolyatsii i nekotorye ikh primeneniya, Nauka, M., 1971 | MR | Zbl