On the Principle of Doubly Symmetric Kazmin Sets
Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 3-19
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of the completeness of the system of analytic functions of the form $\bigcup_{k=0}^2\{[W(z\delta^k)]^{3n}\}_{n=0}^\infty$, where $n=0,1,\dots$, $k=0,1,2$, and $\delta=\exp({2\pi i}/{3})$, in $A(D)$ is solved.
Keywords:
system of analytic functions, completeness problem, boundary-value problem.
@article{MZM_2017_101_1_a0,
author = {G. I. Andriyanov},
title = {On the {Principle} of {Doubly} {Symmetric} {Kazmin} {Sets}},
journal = {Matemati\v{c}eskie zametki},
pages = {3--19},
publisher = {mathdoc},
volume = {101},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a0/}
}
G. I. Andriyanov. On the Principle of Doubly Symmetric Kazmin Sets. Matematičeskie zametki, Tome 101 (2017) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/MZM_2017_101_1_a0/