Asymptotic Equalities for Best Approximations for Classes of Infinitely Differentiable Functions Defined by the Modulus of Continuity
Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 904-920

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain asymptotic estimates for best approximations by trigonometric polynomials in the metric of the space $C(L_p)$ for classes of periodic functions expressible as convolutions of kernels $\Psi_\beta$ with Fourier coefficients decreasing to zero faster than any power sequence, and with functions $\varphi\in C$  $(\varphi\in L_p)$ whose moduli of continuity do not exceed the given majorant of $\omega(t)$. It is proved that, in the spaces $C$ and $L_1$, for convex moduli of continuity $\omega(t)$, the obtained estimates are asymptotically sharp.
Keywords: best approximation by trigonometric polynomials, periodic infinitely differentiable function, modulus of continuity, generalized Poisson kernel, linear approximation method, Kolmogorov–Nikol'skii problem.
@article{MZM_2016_99_6_a9,
     author = {A. S. Serdyuk and I. V. Sokolenko},
     title = {Asymptotic {Equalities} for {Best} {Approximations} for {Classes} of {Infinitely} {Differentiable} {Functions} {Defined} by the {Modulus} of {Continuity}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {904--920},
     publisher = {mathdoc},
     volume = {99},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a9/}
}
TY  - JOUR
AU  - A. S. Serdyuk
AU  - I. V. Sokolenko
TI  - Asymptotic Equalities for Best Approximations for Classes of Infinitely Differentiable Functions Defined by the Modulus of Continuity
JO  - Matematičeskie zametki
PY  - 2016
SP  - 904
EP  - 920
VL  - 99
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a9/
LA  - ru
ID  - MZM_2016_99_6_a9
ER  - 
%0 Journal Article
%A A. S. Serdyuk
%A I. V. Sokolenko
%T Asymptotic Equalities for Best Approximations for Classes of Infinitely Differentiable Functions Defined by the Modulus of Continuity
%J Matematičeskie zametki
%D 2016
%P 904-920
%V 99
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a9/
%G ru
%F MZM_2016_99_6_a9
A. S. Serdyuk; I. V. Sokolenko. Asymptotic Equalities for Best Approximations for Classes of Infinitely Differentiable Functions Defined by the Modulus of Continuity. Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 904-920. http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a9/