Asymptotic Equalities for Best Approximations for Classes of Infinitely Differentiable Functions Defined by the Modulus of Continuity
Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 904-920.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain asymptotic estimates for best approximations by trigonometric polynomials in the metric of the space $C(L_p)$ for classes of periodic functions expressible as convolutions of kernels $\Psi_\beta$ with Fourier coefficients decreasing to zero faster than any power sequence, and with functions $\varphi\in C$  $(\varphi\in L_p)$ whose moduli of continuity do not exceed the given majorant of $\omega(t)$. It is proved that, in the spaces $C$ and $L_1$, for convex moduli of continuity $\omega(t)$, the obtained estimates are asymptotically sharp.
Keywords: best approximation by trigonometric polynomials, periodic infinitely differentiable function, modulus of continuity, generalized Poisson kernel, linear approximation method, Kolmogorov–Nikol'skii problem.
@article{MZM_2016_99_6_a9,
     author = {A. S. Serdyuk and I. V. Sokolenko},
     title = {Asymptotic {Equalities} for {Best} {Approximations} for {Classes} of {Infinitely} {Differentiable} {Functions} {Defined} by the {Modulus} of {Continuity}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {904--920},
     publisher = {mathdoc},
     volume = {99},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a9/}
}
TY  - JOUR
AU  - A. S. Serdyuk
AU  - I. V. Sokolenko
TI  - Asymptotic Equalities for Best Approximations for Classes of Infinitely Differentiable Functions Defined by the Modulus of Continuity
JO  - Matematičeskie zametki
PY  - 2016
SP  - 904
EP  - 920
VL  - 99
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a9/
LA  - ru
ID  - MZM_2016_99_6_a9
ER  - 
%0 Journal Article
%A A. S. Serdyuk
%A I. V. Sokolenko
%T Asymptotic Equalities for Best Approximations for Classes of Infinitely Differentiable Functions Defined by the Modulus of Continuity
%J Matematičeskie zametki
%D 2016
%P 904-920
%V 99
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a9/
%G ru
%F MZM_2016_99_6_a9
A. S. Serdyuk; I. V. Sokolenko. Asymptotic Equalities for Best Approximations for Classes of Infinitely Differentiable Functions Defined by the Modulus of Continuity. Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 904-920. http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a9/

[1] A. I. Stepanets, Metody teorii priblizhenii. I, Tr. In-ta matem. NAN Ukrainy, 40, In-t matem. NAN Ukrainy, Kiev, 2002 | MR | Zbl

[2] A. I. Stepanets, “Ukloneniya summ Fure na klassakh beskonechno differentsiruemykh funktsii”, Ukr. matem. zhurn., 36:6 (1984), 750–758 | MR | Zbl

[3] A. I. Stepanets, “Reshenie zadachi Kolmogorova–Nikolskogo dlya integralov Puassona nepreryvnykh funktsii”, Matem. sb., 192:1 (2001), 113–138 | DOI | MR | Zbl

[4] S. A. Telyakovskii, “O priblizhenii summami Fure funktsii vysokoi gladkosti”, Ukr. matem. zhurn., 41:4 (1989), 510–518 | Zbl

[5] L. P. Falaleev, “Priblizhenie sopryazhennykh funktsii obobschennymi operatorami Abelya–Puassona”, Matem. zametki, 67:4 (2000), 595–602 | DOI | MR | Zbl

[6] A. I. Stepanets, A. S. Serdyuk, A. L. Shidlich, “Klassifikatsiya beskonechno differentsiruemykh funktsii”, Ukr. matem. zhurn., 60:12 (2008), 1686–1708 | MR | Zbl

[7] N. P. Korneichuk, “Verkhnie grani nailuchshikh priblizhenii na klassakh differentsiruemykh funktsii v metrikakh $C$ i $L$”, Dokl. AN SSSR, 190 (1970), 269–271 | Zbl

[8] V. T. Shevaldin, “Otsenki snizu poperechnikov klassov funktsii, opredelyaemykh modulem nepreryvnosti”, Izv. RAN. Ser. matem., 58:5 (1994), 172–188 | MR | Zbl

[9] A. S. Serdyuk, I. V. Sokolenko, “Liniini metodi nablizhennya ta naikraschi nablizhennya integraliv Puassona funktsii z klasiv $H_{\omega_p}$ v metrikakh prostoriv $L_p$”, Ukr. matem. zhurn., 62:7 (2010), 979–996 | MR | Zbl

[10] A. S. Serdyuk, I. V. Sokolenko, “Asymptotic behavior of best approximations of classes of Poisson integrals of functions from $H_\omega$”, J. Approx. Theory, 163:11 (2011), 1692–1706 | DOI | MR | Zbl

[11] A. S. Serdyuk, I.V. Sokolenko, “Asymptotic behavior of best approximations of classes of periodic analytic functions defined by moduli of continuity”, Proceedings of Bulgarian–Turkish–Ukrainian Scientific Conference“Mathematical Analysis, Differential Equations and their Applications” (Sunny Beach, Bulgaria, 15–20 September, 2010), Academic Publ. House “Prof. Marin Drinov”, Sofia, 2011, 173–182

[12] A. I. Stepanets, Metody teorii priblizhenii. II, Tr. In-ta matem. NAN Ukrainy, 40, In-t matem. NAN Ukrainy, Kiev, 2002 | MR | Zbl

[13] A. S. Serdyuk, “Pro odin liniinii metod nablizhennya periodichnikh funktsii”, Problemi teoriï nablizhennya funktsii ta sumizhni pitannya, Zbirnik prats institutu matematiki NAN Ukraïni, 1, no. 1, In-t matem. NAN Ukraïni, Kiïv, 2004, 294–336 | Zbl

[14] N. P. Korneichuk, Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR | Zbl

[15] S. A. Telyakovskii, “Nekotorye otsenki dlya trigonometricheskikh ryadov s kvazivypuklymi koeffitsientami”, Matem. sb., 63 (105):3 (1964), 426–444 | MR | Zbl

[16] A. S. Serdyuk, “Nablizhennya neskinchenno diferentsiiovnikh periodichnikh funktsii interpolyatsiinimi trigonometrichnimi polinomami”, Ukr. matem. zhurn., 56:4 (2004), 495–505 | MR | Zbl

[17] S. B. Stechkin, “Otsenka ostatka ryada Fure dlya differentsiruemykh funktsii”, Priblizhenie funktsii polinomami i splainami, Tr. MIAN SSSR, 145, 1980, 126–151 | MR | Zbl

[18] S. A. Telyakovskii, “Otsenka normy funktsii cherez ee koeffitsienty Fure, udobnaya v zadachakh teorii approksimatsii”, Priblizhenie periodicheskikh funktsii, Tr. MIAN SSSR, 109, 1971, 65–97 | MR | Zbl