Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_99_6_a9, author = {A. S. Serdyuk and I. V. Sokolenko}, title = {Asymptotic {Equalities} for {Best} {Approximations} for {Classes} of {Infinitely} {Differentiable} {Functions} {Defined} by the {Modulus} of {Continuity}}, journal = {Matemati\v{c}eskie zametki}, pages = {904--920}, publisher = {mathdoc}, volume = {99}, number = {6}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a9/} }
TY - JOUR AU - A. S. Serdyuk AU - I. V. Sokolenko TI - Asymptotic Equalities for Best Approximations for Classes of Infinitely Differentiable Functions Defined by the Modulus of Continuity JO - Matematičeskie zametki PY - 2016 SP - 904 EP - 920 VL - 99 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a9/ LA - ru ID - MZM_2016_99_6_a9 ER -
%0 Journal Article %A A. S. Serdyuk %A I. V. Sokolenko %T Asymptotic Equalities for Best Approximations for Classes of Infinitely Differentiable Functions Defined by the Modulus of Continuity %J Matematičeskie zametki %D 2016 %P 904-920 %V 99 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a9/ %G ru %F MZM_2016_99_6_a9
A. S. Serdyuk; I. V. Sokolenko. Asymptotic Equalities for Best Approximations for Classes of Infinitely Differentiable Functions Defined by the Modulus of Continuity. Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 904-920. http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a9/
[1] A. I. Stepanets, Metody teorii priblizhenii. I, Tr. In-ta matem. NAN Ukrainy, 40, In-t matem. NAN Ukrainy, Kiev, 2002 | MR | Zbl
[2] A. I. Stepanets, “Ukloneniya summ Fure na klassakh beskonechno differentsiruemykh funktsii”, Ukr. matem. zhurn., 36:6 (1984), 750–758 | MR | Zbl
[3] A. I. Stepanets, “Reshenie zadachi Kolmogorova–Nikolskogo dlya integralov Puassona nepreryvnykh funktsii”, Matem. sb., 192:1 (2001), 113–138 | DOI | MR | Zbl
[4] S. A. Telyakovskii, “O priblizhenii summami Fure funktsii vysokoi gladkosti”, Ukr. matem. zhurn., 41:4 (1989), 510–518 | Zbl
[5] L. P. Falaleev, “Priblizhenie sopryazhennykh funktsii obobschennymi operatorami Abelya–Puassona”, Matem. zametki, 67:4 (2000), 595–602 | DOI | MR | Zbl
[6] A. I. Stepanets, A. S. Serdyuk, A. L. Shidlich, “Klassifikatsiya beskonechno differentsiruemykh funktsii”, Ukr. matem. zhurn., 60:12 (2008), 1686–1708 | MR | Zbl
[7] N. P. Korneichuk, “Verkhnie grani nailuchshikh priblizhenii na klassakh differentsiruemykh funktsii v metrikakh $C$ i $L$”, Dokl. AN SSSR, 190 (1970), 269–271 | Zbl
[8] V. T. Shevaldin, “Otsenki snizu poperechnikov klassov funktsii, opredelyaemykh modulem nepreryvnosti”, Izv. RAN. Ser. matem., 58:5 (1994), 172–188 | MR | Zbl
[9] A. S. Serdyuk, I. V. Sokolenko, “Liniini metodi nablizhennya ta naikraschi nablizhennya integraliv Puassona funktsii z klasiv $H_{\omega_p}$ v metrikakh prostoriv $L_p$”, Ukr. matem. zhurn., 62:7 (2010), 979–996 | MR | Zbl
[10] A. S. Serdyuk, I. V. Sokolenko, “Asymptotic behavior of best approximations of classes of Poisson integrals of functions from $H_\omega$”, J. Approx. Theory, 163:11 (2011), 1692–1706 | DOI | MR | Zbl
[11] A. S. Serdyuk, I.V. Sokolenko, “Asymptotic behavior of best approximations of classes of periodic analytic functions defined by moduli of continuity”, Proceedings of Bulgarian–Turkish–Ukrainian Scientific Conference“Mathematical Analysis, Differential Equations and their Applications” (Sunny Beach, Bulgaria, 15–20 September, 2010), Academic Publ. House “Prof. Marin Drinov”, Sofia, 2011, 173–182
[12] A. I. Stepanets, Metody teorii priblizhenii. II, Tr. In-ta matem. NAN Ukrainy, 40, In-t matem. NAN Ukrainy, Kiev, 2002 | MR | Zbl
[13] A. S. Serdyuk, “Pro odin liniinii metod nablizhennya periodichnikh funktsii”, Problemi teoriï nablizhennya funktsii ta sumizhni pitannya, Zbirnik prats institutu matematiki NAN Ukraïni, 1, no. 1, In-t matem. NAN Ukraïni, Kiïv, 2004, 294–336 | Zbl
[14] N. P. Korneichuk, Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR | Zbl
[15] S. A. Telyakovskii, “Nekotorye otsenki dlya trigonometricheskikh ryadov s kvazivypuklymi koeffitsientami”, Matem. sb., 63 (105):3 (1964), 426–444 | MR | Zbl
[16] A. S. Serdyuk, “Nablizhennya neskinchenno diferentsiiovnikh periodichnikh funktsii interpolyatsiinimi trigonometrichnimi polinomami”, Ukr. matem. zhurn., 56:4 (2004), 495–505 | MR | Zbl
[17] S. B. Stechkin, “Otsenka ostatka ryada Fure dlya differentsiruemykh funktsii”, Priblizhenie funktsii polinomami i splainami, Tr. MIAN SSSR, 145, 1980, 126–151 | MR | Zbl
[18] S. A. Telyakovskii, “Otsenka normy funktsii cherez ee koeffitsienty Fure, udobnaya v zadachakh teorii approksimatsii”, Priblizhenie periodicheskikh funktsii, Tr. MIAN SSSR, 109, 1971, 65–97 | MR | Zbl