Asymptotic Equalities for Best Approximations for Classes of Infinitely Differentiable Functions Defined by the Modulus of Continuity
Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 904-920
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain asymptotic estimates for best approximations by trigonometric polynomials in the metric of the space $C(L_p)$ for classes of periodic functions expressible as convolutions of kernels $\Psi_\beta$ with Fourier coefficients decreasing to zero faster than any power sequence, and with functions $\varphi\in C$ $(\varphi\in L_p)$ whose moduli of continuity do not exceed the given majorant of $\omega(t)$. It is proved that, in the spaces $C$ and $L_1$, for convex moduli of continuity $\omega(t)$, the obtained estimates are asymptotically sharp.
Keywords:
best approximation by trigonometric polynomials, periodic infinitely differentiable function, modulus of continuity, generalized Poisson kernel, linear approximation method, Kolmogorov–Nikol'skii problem.
@article{MZM_2016_99_6_a9,
author = {A. S. Serdyuk and I. V. Sokolenko},
title = {Asymptotic {Equalities} for {Best} {Approximations} for {Classes} of {Infinitely} {Differentiable} {Functions} {Defined} by the {Modulus} of {Continuity}},
journal = {Matemati\v{c}eskie zametki},
pages = {904--920},
publisher = {mathdoc},
volume = {99},
number = {6},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a9/}
}
TY - JOUR AU - A. S. Serdyuk AU - I. V. Sokolenko TI - Asymptotic Equalities for Best Approximations for Classes of Infinitely Differentiable Functions Defined by the Modulus of Continuity JO - Matematičeskie zametki PY - 2016 SP - 904 EP - 920 VL - 99 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a9/ LA - ru ID - MZM_2016_99_6_a9 ER -
%0 Journal Article %A A. S. Serdyuk %A I. V. Sokolenko %T Asymptotic Equalities for Best Approximations for Classes of Infinitely Differentiable Functions Defined by the Modulus of Continuity %J Matematičeskie zametki %D 2016 %P 904-920 %V 99 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a9/ %G ru %F MZM_2016_99_6_a9
A. S. Serdyuk; I. V. Sokolenko. Asymptotic Equalities for Best Approximations for Classes of Infinitely Differentiable Functions Defined by the Modulus of Continuity. Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 904-920. http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a9/