Jacobi-Type Differential Relations for the Lauricella Function $F_D^{(N)}$
Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 832-847
Voir la notice de l'article provenant de la source Math-Net.Ru
For the generalized Lauricella hypergeometric function $F_D^{(N)}$, Jacobi-type differential relations are obtained and their proof is given. A new system of partial differential equations for the function $F_D^{(N)}$ is derived. Relations between associated Lauricella functions are presented. These results possess a wide range of applications, including the theory of Riemann–Hilbert boundary-value problem.
Keywords:
generalized Lauricella hypergeometric function, Jacobi-type differential relation, Jacobi identity, Gauss function, Christoffel–Schwarz integral.
@article{MZM_2016_99_6_a2,
author = {S. I. Bezrodnykh},
title = {Jacobi-Type {Differential} {Relations} for the {Lauricella} {Function} $F_D^{(N)}$},
journal = {Matemati\v{c}eskie zametki},
pages = {832--847},
publisher = {mathdoc},
volume = {99},
number = {6},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a2/}
}
S. I. Bezrodnykh. Jacobi-Type Differential Relations for the Lauricella Function $F_D^{(N)}$. Matematičeskie zametki, Tome 99 (2016) no. 6, pp. 832-847. http://geodesic.mathdoc.fr/item/MZM_2016_99_6_a2/