Approximation of Polynomials in the Haar System in Weighted Symmetric Spaces
Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 649-657

Voir la notice de l'article provenant de la source Math-Net.Ru

For weighted symmetric (or rearrangement-invariant) spaces with nontrivial Boyd indices and weights from suitable Muckenhoupt classes, the basis property of the Haar system in these spaces and two versions of the direct theorem on the approximation by polynomials in the Haar system are established.
Keywords: approximation by polynomials in the Haar system, weighted symmetric space, basis property of the Haar system, Muckenhoupt class, Hölder's inequality, generalized modulus of continuity, Banach function space.
@article{MZM_2016_99_5_a1,
     author = {S. S. Volosivets},
     title = {Approximation of {Polynomials} in the {Haar} {System} in {Weighted} {Symmetric} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {649--657},
     publisher = {mathdoc},
     volume = {99},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a1/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - Approximation of Polynomials in the Haar System in Weighted Symmetric Spaces
JO  - Matematičeskie zametki
PY  - 2016
SP  - 649
EP  - 657
VL  - 99
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a1/
LA  - ru
ID  - MZM_2016_99_5_a1
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T Approximation of Polynomials in the Haar System in Weighted Symmetric Spaces
%J Matematičeskie zametki
%D 2016
%P 649-657
%V 99
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a1/
%G ru
%F MZM_2016_99_5_a1
S. S. Volosivets. Approximation of Polynomials in the Haar System in Weighted Symmetric Spaces. Matematičeskie zametki, Tome 99 (2016) no. 5, pp. 649-657. http://geodesic.mathdoc.fr/item/MZM_2016_99_5_a1/