The Hardy--Littlewood Theorem for Multiple Fourier Series with Monotone Coefficients
Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 502-510.

Voir la notice de l'article provenant de la source Math-Net.Ru

It was proved earlier that, for multiple Fourier series whose coefficients are monotone in each index, the classical Hardy–Littlewood theorem is not valid for $p\le 2m/(m+1)$, where $m$ is the dimension of the space. We establish how the theorem must be modified in this case.
Keywords: Hardy–Littlewood theorem, multiple Fourier series, trigonometric polynomial.
@article{MZM_2016_99_4_a2,
     author = {M. I. Dyachenko and E. D. Nursultanov and M. E. Nursultanov},
     title = {The {Hardy--Littlewood} {Theorem} for {Multiple} {Fourier} {Series} with {Monotone} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {502--510},
     publisher = {mathdoc},
     volume = {99},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a2/}
}
TY  - JOUR
AU  - M. I. Dyachenko
AU  - E. D. Nursultanov
AU  - M. E. Nursultanov
TI  - The Hardy--Littlewood Theorem for Multiple Fourier Series with Monotone Coefficients
JO  - Matematičeskie zametki
PY  - 2016
SP  - 502
EP  - 510
VL  - 99
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a2/
LA  - ru
ID  - MZM_2016_99_4_a2
ER  - 
%0 Journal Article
%A M. I. Dyachenko
%A E. D. Nursultanov
%A M. E. Nursultanov
%T The Hardy--Littlewood Theorem for Multiple Fourier Series with Monotone Coefficients
%J Matematičeskie zametki
%D 2016
%P 502-510
%V 99
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a2/
%G ru
%F MZM_2016_99_4_a2
M. I. Dyachenko; E. D. Nursultanov; M. E. Nursultanov. The Hardy--Littlewood Theorem for Multiple Fourier Series with Monotone Coefficients. Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 502-510. http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a2/

[1] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[2] F. Móricz, “On double cosine, sine and Walsh series with monotone coefficients”, Proc. Amer. Math. Soc., 109:2 (1990), 417–425 | DOI | MR | Zbl

[3] M. I. Dyachenko, “O skhodimosti dvoinykh trigonometricheskikh ryadov i ryadov Fure s monotonnymi koeffitsientami”, Matem. sb., 129:1 (1986), 55–72 | MR | Zbl

[4] M. I. D'jachenko, “Multiple trigonometric series with lexicographically monotone coefficients”, Anal. Math., 16:3 (1990), 173–190 | DOI | MR | Zbl

[5] M. I. Dyachenko, “Normy yader Dirikhle i nekotorykh drugikh trigonometricheskikh polinomov v prostranstvakh $L_p$”, Matem. sb., 184:3 (1993), 3–20 | MR | Zbl

[6] E. D. Nursultanov, “Setevye prostranstva i neravenstva tipa Khardi–Litlvuda”, Matem. sb., 189:3 (1998), 83–102 | DOI | MR | Zbl

[7] E. D. Nursultanov, “Interpolation properties of some anisotropic spaces and Hardy–Littlewood type inequalities”, East J. Approx., 4:2 (1998), 243–275 | MR | Zbl

[8] M. Dyachenko, S. Tikhonov, “Convergence of trigonometric series with general monotone coefficients”, C. R. Math. Acad. Sci. Paris, 345:3 (2007), 123–126 | DOI | MR | Zbl

[9] M. Dyachenko, S. Tikhonov, “A Hardy–Littlewood theorem for multiple series”, J. Math. Anal. Appl., 339:1 (2008), 503–510 | DOI | MR | Zbl

[10] M. Dyachenko, S. Tikhonov, “Integrability and continuity of functions represented by trigonometric series: coefficients criteria”, Studia Math., 193:3 (2009), 285–306 | DOI | MR | Zbl

[11] V. A. Yudin, “Povedenie konstant Lebega”, Matem. zametki, 17:3 (1975), 401–405 | MR | Zbl

[12] L. Colzani, P. M. Soardi, “$L^p$-norms of certain kernels of the $N$-dimensional torus”, Trans. Amer. Math. Soc., 266:2 (1981), 617–627 | MR | Zbl