The Hardy--Littlewood Theorem for Multiple Fourier Series with Monotone Coefficients
Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 502-510

Voir la notice de l'article provenant de la source Math-Net.Ru

It was proved earlier that, for multiple Fourier series whose coefficients are monotone in each index, the classical Hardy–Littlewood theorem is not valid for $p\le 2m/(m+1)$, where $m$ is the dimension of the space. We establish how the theorem must be modified in this case.
Keywords: Hardy–Littlewood theorem, multiple Fourier series, trigonometric polynomial.
@article{MZM_2016_99_4_a2,
     author = {M. I. Dyachenko and E. D. Nursultanov and M. E. Nursultanov},
     title = {The {Hardy--Littlewood} {Theorem} for {Multiple} {Fourier} {Series} with {Monotone} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {502--510},
     publisher = {mathdoc},
     volume = {99},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a2/}
}
TY  - JOUR
AU  - M. I. Dyachenko
AU  - E. D. Nursultanov
AU  - M. E. Nursultanov
TI  - The Hardy--Littlewood Theorem for Multiple Fourier Series with Monotone Coefficients
JO  - Matematičeskie zametki
PY  - 2016
SP  - 502
EP  - 510
VL  - 99
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a2/
LA  - ru
ID  - MZM_2016_99_4_a2
ER  - 
%0 Journal Article
%A M. I. Dyachenko
%A E. D. Nursultanov
%A M. E. Nursultanov
%T The Hardy--Littlewood Theorem for Multiple Fourier Series with Monotone Coefficients
%J Matematičeskie zametki
%D 2016
%P 502-510
%V 99
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a2/
%G ru
%F MZM_2016_99_4_a2
M. I. Dyachenko; E. D. Nursultanov; M. E. Nursultanov. The Hardy--Littlewood Theorem for Multiple Fourier Series with Monotone Coefficients. Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 502-510. http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a2/