Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_99_4_a2, author = {M. I. Dyachenko and E. D. Nursultanov and M. E. Nursultanov}, title = {The {Hardy--Littlewood} {Theorem} for {Multiple} {Fourier} {Series} with {Monotone} {Coefficients}}, journal = {Matemati\v{c}eskie zametki}, pages = {502--510}, publisher = {mathdoc}, volume = {99}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a2/} }
TY - JOUR AU - M. I. Dyachenko AU - E. D. Nursultanov AU - M. E. Nursultanov TI - The Hardy--Littlewood Theorem for Multiple Fourier Series with Monotone Coefficients JO - Matematičeskie zametki PY - 2016 SP - 502 EP - 510 VL - 99 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a2/ LA - ru ID - MZM_2016_99_4_a2 ER -
%0 Journal Article %A M. I. Dyachenko %A E. D. Nursultanov %A M. E. Nursultanov %T The Hardy--Littlewood Theorem for Multiple Fourier Series with Monotone Coefficients %J Matematičeskie zametki %D 2016 %P 502-510 %V 99 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a2/ %G ru %F MZM_2016_99_4_a2
M. I. Dyachenko; E. D. Nursultanov; M. E. Nursultanov. The Hardy--Littlewood Theorem for Multiple Fourier Series with Monotone Coefficients. Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 502-510. http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a2/
[1] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR
[2] F. Móricz, “On double cosine, sine and Walsh series with monotone coefficients”, Proc. Amer. Math. Soc., 109:2 (1990), 417–425 | DOI | MR | Zbl
[3] M. I. Dyachenko, “O skhodimosti dvoinykh trigonometricheskikh ryadov i ryadov Fure s monotonnymi koeffitsientami”, Matem. sb., 129:1 (1986), 55–72 | MR | Zbl
[4] M. I. D'jachenko, “Multiple trigonometric series with lexicographically monotone coefficients”, Anal. Math., 16:3 (1990), 173–190 | DOI | MR | Zbl
[5] M. I. Dyachenko, “Normy yader Dirikhle i nekotorykh drugikh trigonometricheskikh polinomov v prostranstvakh $L_p$”, Matem. sb., 184:3 (1993), 3–20 | MR | Zbl
[6] E. D. Nursultanov, “Setevye prostranstva i neravenstva tipa Khardi–Litlvuda”, Matem. sb., 189:3 (1998), 83–102 | DOI | MR | Zbl
[7] E. D. Nursultanov, “Interpolation properties of some anisotropic spaces and Hardy–Littlewood type inequalities”, East J. Approx., 4:2 (1998), 243–275 | MR | Zbl
[8] M. Dyachenko, S. Tikhonov, “Convergence of trigonometric series with general monotone coefficients”, C. R. Math. Acad. Sci. Paris, 345:3 (2007), 123–126 | DOI | MR | Zbl
[9] M. Dyachenko, S. Tikhonov, “A Hardy–Littlewood theorem for multiple series”, J. Math. Anal. Appl., 339:1 (2008), 503–510 | DOI | MR | Zbl
[10] M. Dyachenko, S. Tikhonov, “Integrability and continuity of functions represented by trigonometric series: coefficients criteria”, Studia Math., 193:3 (2009), 285–306 | DOI | MR | Zbl
[11] V. A. Yudin, “Povedenie konstant Lebega”, Matem. zametki, 17:3 (1975), 401–405 | MR | Zbl
[12] L. Colzani, P. M. Soardi, “$L^p$-norms of certain kernels of the $N$-dimensional torus”, Trans. Amer. Math. Soc., 266:2 (1981), 617–627 | MR | Zbl