Trigonometric Integrals over One-Dimensional Quasilattices of Arbitrary Codimension
Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 603-612.

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of one-dimensional quasilattices parametrized by translations of the torus is studied. The trigonometric integrals averaging the moduli of trigonometric sums related to quasilattices are considered for this class. Nontrivial estimates of such integrals are obtained. The relationship between trigonometric integrals and several problems in the theory of Diophantine approximations is discussed.
Mots-clés : quasilattice, Diophantine approximation
Keywords: parametrization by translations, trigonometric integral, trigonometric sum, codimension, exchanged tiling of the torus, Weyl's uniform distribution theorem.
@article{MZM_2016_99_4_a11,
     author = {A. V. Shutov},
     title = {Trigonometric {Integrals} over {One-Dimensional} {Quasilattices} of {Arbitrary} {Codimension}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {603--612},
     publisher = {mathdoc},
     volume = {99},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a11/}
}
TY  - JOUR
AU  - A. V. Shutov
TI  - Trigonometric Integrals over One-Dimensional Quasilattices of Arbitrary Codimension
JO  - Matematičeskie zametki
PY  - 2016
SP  - 603
EP  - 612
VL  - 99
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a11/
LA  - ru
ID  - MZM_2016_99_4_a11
ER  - 
%0 Journal Article
%A A. V. Shutov
%T Trigonometric Integrals over One-Dimensional Quasilattices of Arbitrary Codimension
%J Matematičeskie zametki
%D 2016
%P 603-612
%V 99
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a11/
%G ru
%F MZM_2016_99_4_a11
A. V. Shutov. Trigonometric Integrals over One-Dimensional Quasilattices of Arbitrary Codimension. Matematičeskie zametki, Tome 99 (2016) no. 4, pp. 603-612. http://geodesic.mathdoc.fr/item/MZM_2016_99_4_a11/

[1] C. Janot, Quasicrystals. A Primer, Clarendon Press, Oxford, 1994 | MR | Zbl

[2] V. V. Krasilschikov, A. V. Shutov, “Odnomernye kvazikristally: approksimatsiya periodicheskimi strukturami i vlozhenie reshetok”, Noveishie problemy teorii polya, 5, Izd-vo Kazansk. un-ta, Kazan, 2006, 145–154

[3] V. V. Krasilschikov, A. V. Shutov, “Nekotorye voprosy vlozheniya reshetok v odnomernye kvaziperiodicheskie razbieniya”, Vestn. SamGU. Estestvennonauchn. ser., 2007, no. 7(57), 84–91

[4] V. V. Krasilschikov, A. V. Shutov, “Odnomernye kvaziperiodicheskie razbieniya, dopuskayuschie vlozhenie progressii”, Izv. vuzov. Matem., 2009, no. 7, 3–9 | MR | Zbl

[5] V. V. Krasilschikov, A. V. Shutov, “Raspredelenie tochek odnomernykh kvazireshetok po peremennomu modulyu”, Izv. vuzov. Matem., 2012, no. 3, 17–23 | MR | Zbl

[6] V. V. Krasilschikov, “Spektr odnomernykh kvazireshetok”, Sib. matem. zhurn., 51:1 (2010), 68–73 | MR | Zbl

[7] A. V. Shutov, “Arifmetika i geometriya odnomernykh kvazireshetok”, Chebyshevskii sb., 11:1 (2010), 255–262 | MR | Zbl

[8] A. V. Shutov, “Trigonometricheskie summy nad odnomernymi kvazireshetkami”, Chebyshevskii sb., 13:2 (2012), 136–148 | MR | Zbl

[9] A. V. Shutov, “Trigonometricheskie summy nad odnomernymi kvazireshetkami proizvolnoi korazmernosti”, Matem. zametki, 97:5 (2015), 781–793 | DOI | MR | Zbl

[10] I. M. Vinogradov, Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1971 | MR | Zbl

[11] V. G. Zhuravlev, “Mnogomernaya teorema Gekke o raspredelenii drobnykh chastei”, Algebra i analiz, 24:1 (2012), 95–130 | MR | Zbl

[12] V. Baladi, D. Rockmore, N. Tongring, C. Tresser, “Renormalization on the $n$-dimensional torus”, Nonlinearity, 5:5 (1992), 1111–1136 | DOI | MR | Zbl

[13] G. Rauzy, “Nombres algébriques et substitutions”, Bull. Soc. Math. France, 110:2 (1982), 147–178 | MR | Zbl

[14] A. V. Shutov, “Dvumernaya problema Gekke–Kestena”, Chebyshevskii sb., 12:2 (2011), 151–162 | MR | Zbl

[15] A. V. Shutov, “Ob odnom semeistve dvumernykh mnozhestv ogranichennogo ostatka”, Chebyshevskii sb., 12:4 (2011), 264–271 | MR | Zbl

[16] A. A. Abrosimova, “Mnozhestva ogranichennogo ostatka na dvumernom tore”, Chebyshevskii sb., 12:4 (2011), 15–23 | MR | Zbl

[17] N. Pytheas Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Springer-Verlag, Berlin, 2002 | MR | Zbl

[18] V. G. Zhuravlev, “Mnogogranniki ogranichennogo ostatka”, Matematika i informatika, 1, K 75-letiyu so dnya rozhdeniya Anatoliya Alekseevicha Karatsuby, Sovr. probl. matem., 16, MIAN, M., 2012, 82–102 | DOI | Zbl

[19] A. A. Abrosimova, “$\mathrm{BR}$-mnozhestva”, Chebyshevskii sb., 16:2 (2015), 8–22

[20] A. V. Shutov, “Mnogomernye obobscheniya summ drobnykh dolei i ikh teoretiko-chislovye prilozheniya”, Chebyshevskii sb., 14:1 (2013), 104–118 | MR

[21] H. Weyl, “Über die Gibbs'sche Erscheinung und verwandte Konvergenzphänomene”, Rend. Circ. Math. Palermo, 30 (1910), 377–407 | DOI | Zbl

[22] L. Keipers, G. Niderreiter, Ravnomernoe raspredelenie posledovatelnostei, Mir, M., 1985 | MR | Zbl

[23] J. Beck, “Probabilistic diophantine approximation. I. Kronecker sequences”, Ann. Math., 140:2 (1994), 451–502 | DOI | MR | Zbl

[24] M. Drmota, R. F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Math., 1651, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl