Multidimensional Watson Lemma and Its Applications
Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 395-403.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the multidimensional analog of the well-known Watson lemma and then apply it to prove a local limit theorem for the transition probabilities of symmetric random walks on the multidimensional lattice with infinite variance of jumps.
Keywords: multidimensional Watson lemma, symmetric random walk, infinite variance of jumps, multidimensional lattice, branching random walk.
@article{MZM_2016_99_3_a8,
     author = {A. I. Rytova and E. B. Yarovaya},
     title = {Multidimensional {Watson} {Lemma} and {Its} {Applications}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {395--403},
     publisher = {mathdoc},
     volume = {99},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a8/}
}
TY  - JOUR
AU  - A. I. Rytova
AU  - E. B. Yarovaya
TI  - Multidimensional Watson Lemma and Its Applications
JO  - Matematičeskie zametki
PY  - 2016
SP  - 395
EP  - 403
VL  - 99
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a8/
LA  - ru
ID  - MZM_2016_99_3_a8
ER  - 
%0 Journal Article
%A A. I. Rytova
%A E. B. Yarovaya
%T Multidimensional Watson Lemma and Its Applications
%J Matematičeskie zametki
%D 2016
%P 395-403
%V 99
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a8/
%G ru
%F MZM_2016_99_3_a8
A. I. Rytova; E. B. Yarovaya. Multidimensional Watson Lemma and Its Applications. Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 395-403. http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a8/

[1] M. V. Fedoryuk, Asimptotika: integraly i ryady, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1987 | MR | Zbl

[2] E. B. Yarovaya, “Simmetrichnye vetvyaschiesya bluzhdaniya s tyazhelymi khvostami”, Sovremennye problemy matematiki i mekhaniki, Teoriya veroyatnostei i matematicheskaya statistika, 7, Izd-vo Mosk. un-ta, M., 2011, 77–84

[3] E. Yarovaya, “Branching random walks with heavy tails”, Comm. Statist. Theory Methods, 42:16 (2013), 3001–3010 | MR | Zbl

[4] E. Yarovaya, “Criteria for transient behavior of symmetric branching random walks on $\mathbb Z$ and $\mathbb Z^2$”, New Perspectives on Stochastic Modeling and Data Analysis, ISAST, Athens, 2014, 283–294

[5] A. A. Borovkov, K. A. Borovkov, Asymptotic Analysis of Random Walks. Heavy-Tailed Distributions, Encyclopedia Math. Appl., 118, Cambridge Univ. Press, Cambridge, 2008 | MR | Zbl

[6] A. Agbor, S. Molchanov, B. Vainberg, “Global limit theorems on the convergence of multidimensional random walks to stable processes”, Stoch. Dyn., 15:3 (2015), 1550024 | DOI | MR | Zbl

[7] P. Barbe, Approximation of Integrals over Asymptotic Sets with Applications to Probability and Statistics, 2003, arXiv: math/0312132

[8] K. W. Breitung, Asymptotic Approximations for Probability Integrals, Lecture Notes in Math., 1592, Springer-Verlag, Berlin, 1994 | DOI | MR | Zbl

[9] K. Breitung, M. Hohenbichler, “Asymptotic approximations for multivariate integrals with an application to multinormal probabilities”, J. Multivariate Anal., 30:1 (1989), 80–97 | DOI | MR | Zbl

[10] W. Fulks, J. O. Sather, “Asymptotics. II. Laplace's method for multiple integrals”, Pacific J. Math, 11 (1961), 185–192 | DOI | MR | Zbl

[11] E. Hashorva, D. Korshunov, V. I. Piterbarg, “Asymptotic expansion of Gaussian chaos via probabilistic approach”, Extremes, 18:3 (2015), 315–347 | DOI | MR | Zbl

[12] D. Korshunov, V. Piterbarg, E. Khashorva, “Ob asimptoticheskom metode Laplasa i ego primenenii k sluchainomu khaosu”, Matem. zametki, 97:6 (2015), 868–883 | DOI | MR | Zbl

[13] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Tsentr prikladnykh issledovanii pri mekhaniko-matematicheskom fakultete MGU, M., 2007

[14] V. Kozyakin, “On the asymptotics of cosine series in several variables with power coefficients”, J. Comm. Tech. Electron., 60:12 (2015), 1441–1444