Upper Bounds for the Moduli of Zeros of Hermite--Pad\'e Approximations for a Set of Exponential Functions
Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 409-420.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we establish upper bounds for the moduli of zeros of Hermite–Padé approximations of type I for a system of exponential functions $\{e^{\lambda_pz}\}_{p=0}^k$, where $\{\lambda_p\}_{p=0}^k$ are various arbitrary complex numbers. The proved statements supplement and generalize well-known results due to Saff and Varga, as well as those due to Stahl and Wielonsky, on the behavior of zeros of Hermite–Padé approximations for a set of exponential functions $\{e^{pz}\}_{p=0}^k$.
Keywords: diagonal Hermite–Padé approximation of type I, system of exponential functions $\{e^{\lambda_pz}\}_{p=0}^k$, zeros of polynomials.
@article{MZM_2016_99_3_a10,
     author = {A. P. Starovoitov and E. P. Kechko},
     title = {Upper {Bounds} for the {Moduli} of {Zeros} of {Hermite--Pad\'e} {Approximations} for a {Set} of {Exponential} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {409--420},
     publisher = {mathdoc},
     volume = {99},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a10/}
}
TY  - JOUR
AU  - A. P. Starovoitov
AU  - E. P. Kechko
TI  - Upper Bounds for the Moduli of Zeros of Hermite--Pad\'e Approximations for a Set of Exponential Functions
JO  - Matematičeskie zametki
PY  - 2016
SP  - 409
EP  - 420
VL  - 99
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a10/
LA  - ru
ID  - MZM_2016_99_3_a10
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%A E. P. Kechko
%T Upper Bounds for the Moduli of Zeros of Hermite--Pad\'e Approximations for a Set of Exponential Functions
%J Matematičeskie zametki
%D 2016
%P 409-420
%V 99
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a10/
%G ru
%F MZM_2016_99_3_a10
A. P. Starovoitov; E. P. Kechko. Upper Bounds for the Moduli of Zeros of Hermite--Pad\'e Approximations for a Set of Exponential Functions. Matematičeskie zametki, Tome 99 (2016) no. 3, pp. 409-420. http://geodesic.mathdoc.fr/item/MZM_2016_99_3_a10/

[1] K. Mahler, “Perfect systems”, Compositio Math., 19 (1968), 95–166 | MR | Zbl

[2] A. I. Aptekarev, H. Stahl, “Asymptotics of Hermite–Padé polynomials”, Progress in Approximation Theory, Springer Ser. Comput. Math., 19, Springer, New York, 1992 | MR | Zbl

[3] C. Hermite, “Sur la fonction exponentielle”, C. R. Akad. Sci. (Paris), 77 (1873), 18–24, 74–79, 226–233, 285–293 | Zbl

[4] F. Klein, Elementarnaya matematika s tochki zreniya vysshei. T. 1. Arifmetika. Algebra. Analiz, Nauka, M., 1987 | MR | Zbl

[5] A. I. Aptekarev, “O skhodimosti ratsionalnykh approksimatsii k naboru eksponent”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1981, no. 1, 68–74 | MR | Zbl

[6] H. Padé, “Mémoire sur les développements en fractions continues de la fonction exponentielle, pouvant servir d'introduction à la théorie des fractions continues algb́riques”, Ann.École Norm. Sup. Paris (3), 16 (1899), 395–426 | Zbl

[7] C. Hermite, “Sur la généralisation des fractions continues algébriques”, Ann. Math. Pura. Appl. Ser. 2A, 21 (1883), 289–308 | DOI

[8] K. Mahler, “Zur Approximation der Exponentialfunktion und des Logarithmus. I”, J. Reine Angew. Math., 166 (1931), 118–136 ; “Zur Approximation der Exponentialfunktion und des Logarithmus. II”, J. Reine Angew. Math., 166 (1932), 137–150 | Zbl | Zbl

[9] K. Mahler, “Applications of some formulas by Hermite to the approximation of exponentials and logarithms”, Math. Ann., 168 (1967), 200–227 | DOI | MR | Zbl

[10] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl

[11] A. I. Aptekarev, V. I. Buslaev, A. Martines-Finkelshtein, S. P. Suetin, “Approksimatsii Pade, nepreryvnye drobi i ortogonalnye mnogochleny”, UMN, 66:6 (2011), 37–122 | DOI | MR | Zbl

[12] J. P. Boyd, “Chebyshev expansion on intervals with branch points with application to the root of Kepler's equation: a Chebyshev–Hermite–Padé method”, J. Comput. Appl. Math., 223:2 (2009), 693–702 | DOI | MR | Zbl

[13] B. Beckermann, V. Kalyagin, A. C. Matos, F. Wielonsky, “How well does the Hermite–Padé approximation smooth the Gibbs phenomenon?”, Math. Comp., 80:274 (2011), 931–958 | DOI | MR | Zbl

[14] V. N. Sorokin, “Tsiklicheskie grafy i teorema Aperi”, UMN, 57:3 (2002), 99–134 | DOI | MR | Zbl

[15] W. Van Assche, “Multiple orthogonal polynomials, irrationality and transcendence”, Continued Fractions: From Analytic Number Theory to Constructive Approximation, Contemp. Math., 236, Amer. Math. Soc., Providence, RI, 1999, 325–342 | MR | Zbl

[16] G. V. Chudnovsky, “Hermite–Padé approximations to exponential functions and elementary estimates of the measure of irrationality of $\pi$”, The Riemann Problem, Complete Integrability and Arithmetic Applications, Lecture Notes in Math., 925, Springer-Verlag, Berlin, 1982, 299–322 | DOI | MR | Zbl

[17] Ratsionalnye priblizheniya postoyannoi Eilera i rekurrentnye sootnosheniya, Sovr. probl. matem., 9, ed. A. I. Aptekarev, MIAN, M., 2007 | DOI

[18] V. A. Kalyagin, “Approksimatsii Ermita–Pade i spektralnyi analiz nesimmetrichnykh operatorov”, Matem. sb., 185:6 (1994), 79–100 | MR | Zbl

[19] A. I. Aptekarev, V. A. Kalyagin, E. B. Saff, “Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials”, Constr. Approx., 30:2 (2009), 175–223 | DOI | MR | Zbl

[20] A. I. Aptekarev, P. M. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source, Part II”, Comm. Math. Phys., 259:2 (2005), 367–389 | DOI | MR | Zbl

[21] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Globalnyi rezhim raspredeleniya sobstvennykh znachenii sluchainykh matrits s angarmonicheskim potentsialom i vneshnim istochnikom”, TMF, 159:1 (2009), 34–57 | DOI | MR | Zbl

[22] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Sluchainye matritsy s vneshnim istochnikom i asimptotika sovmestno ortogonalnykh mnogochlenov”, Matem. sb., 202:2 (2011), 3–56 | DOI | MR | Zbl

[23] G. Szegö, “Über einige Eigenschaften der Exponentialreihe”, Sitzungsber. Berl. Math. Ges., 23 (1924), 50–64 | Zbl

[24] E. B. Saff, R. S. Varga, “On the zeros and poles of Padé approximations to $e^z$, II”, Padé and Rational Approximations, Academic Press, New York, 1977, 195–213 | MR

[25] F. Wielonsky, “Asymptotics of Diagonal Hermite–Padé Approximants to $e^z$”, J. Approx. Theory, 90:2 (1997), 283–298 | DOI | MR | Zbl

[26] H. Stahl, “Asymptotics for quadratic Hermite–Padé polynomials associated with the exponential function”, Electron. Trans. Numer. Anal., 2002, no. 14, 195–220 | MR

[27] H. Stahl, “Asymptotic distributions of zeros of quadratic Hermite–Padé polynomials associated with the exponential function”, Constr. Approx., 23:2 (2006), 121–164 | DOI | MR | Zbl

[28] A. Kuijlaars, H. Stahl, W. Van Assche, F. Wielonsky, “Asymptotique des approximants de Hermite–Padé quadratiques de la fonction exponentielle et probl`emes de Riemann–Hiebert”, C. R. Acad. Sci. Paris, 336:11 (2003), 893–896 | DOI | MR | Zbl

[29] A. B J. Kuijlaars, H. Stahl, W. Van Assche, F. Wielonsky, “Type II Hermite–Padé approximation to the exponential function”, J. Comput. Appl. Math., 207:2 (2007), 227–244 | DOI | MR | Zbl

[30] A. B J. Kuijlaars, W. Van Assche, F. Wielonsky, “Quadratic Hermite–Padé approximation to the exponential function: a Riemann–Hiebert approach”, Constr. Approx., 21:3 (2005), 351–412 | DOI | MR | Zbl

[31] P. B. Borwein, “Quadratic Hermite–Padé approximation to the exponential function”, Constr. Approx., 2:4 (1986), 291–302 | DOI | MR | Zbl

[32] A. P. Starovoitov, “Ermitovskaya approksimatsiya dvukh eksponent”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:1 (2) (2013), 87–91

[33] F. Wielonsky, “Some properties of Hermite–Padé approximants to $e^z$”, Continued Fractions: From Analytic Number Theory to Constructive Approximation, Contemp. Math., 236, Amer. Math. Soc., Providence RI, 1999, 369–379 | MR | Zbl

[34] F. Wielonsky, “Riemann–Hilbert analysis and uniform convergence of rational interpolants to the exponential function”, J. Approx. Theory, 131:1 (2004), 100–148 | DOI | MR | Zbl

[35] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981 | MR | Zbl

[36] J. L. Walsh, “On the location of the roots of certain types of polynomias”, Trans. Amer. Math. Soc., 24:3 (1922), 163–180 | DOI | MR

[37] M. Marden, Geometry of Polynomials, Math. Surveys, 3, Amer. Math. Soc., Providence, RI, 1966 | MR | Zbl