Homotopy Properties of $\infty$-Simplicial Coalgebras and Homotopy Unital Supplemented $A_\infty$-Algebras
Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 55-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

The homotopy theory of $\infty$-simplicial coalgebras is developed; in terms of this theory, an additional structure on the tensor bigraded coalgebra of a graded module is described such that endowing the coalgebra with this structure is equivalent to endowing the given graded module with the structure of a homotopy unital $A_\infty$-algebra.
Keywords: homotopy theory of $\infty$-simplicial coalgebras, differential $\infty$-simplicial module, homotopy unital augmented $A_\infty$-algebra, tensor bigraded coalgebra of a graded module, connected graded module, SDR-data.
@article{MZM_2016_99_1_a5,
     author = {S. V. Lapin},
     title = {Homotopy {Properties} of $\infty${-Simplicial} {Coalgebras} and {Homotopy} {Unital} {Supplemented} $A_\infty${-Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {55--77},
     publisher = {mathdoc},
     volume = {99},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a5/}
}
TY  - JOUR
AU  - S. V. Lapin
TI  - Homotopy Properties of $\infty$-Simplicial Coalgebras and Homotopy Unital Supplemented $A_\infty$-Algebras
JO  - Matematičeskie zametki
PY  - 2016
SP  - 55
EP  - 77
VL  - 99
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a5/
LA  - ru
ID  - MZM_2016_99_1_a5
ER  - 
%0 Journal Article
%A S. V. Lapin
%T Homotopy Properties of $\infty$-Simplicial Coalgebras and Homotopy Unital Supplemented $A_\infty$-Algebras
%J Matematičeskie zametki
%D 2016
%P 55-77
%V 99
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a5/
%G ru
%F MZM_2016_99_1_a5
S. V. Lapin. Homotopy Properties of $\infty$-Simplicial Coalgebras and Homotopy Unital Supplemented $A_\infty$-Algebras. Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 55-77. http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a5/

[1] T. V. Kadeishvili, “K teorii gomologii rassloennykh prostranstv”, UMN, 35:3 (1980), 183–188 | MR | Zbl

[2] K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Lagrangian Intersection Floer Theory: Anomaly and Obstruction. I, AMS/IP Stud. Adv. Math., Amer. Math. Soc., Providence, RI, 2009 | MR | Zbl

[3] S. V. Lapin, “Differentsialnye moduli Li nad iskrivlennymi krashennymi koalgebrami i $\infty$-simplitsialnye moduli”, Matem. zametki, 96:5 (2014), 709–731 | DOI | MR | Zbl

[4] V. Lyubashenko, Homotopy Unital $A_\infty$-Algebras, 2012, arXiv: 1205.6058v1

[5] V. K. A. M. Gugenheim, L. A. Lambe, J. D. Stasheff, “Perturbation theory in differential homological algebra. II”, Illinois J. Math., 35:3 (1991), 357–373 | MR | Zbl

[6] J.-L. Loday, B. Vallette, Algebraic Operads, Grundlehren Math. Wiss., 346, Springer-Verlag, Berlin, 2012 | MR | Zbl