Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_99_1_a5, author = {S. V. Lapin}, title = {Homotopy {Properties} of $\infty${-Simplicial} {Coalgebras} and {Homotopy} {Unital} {Supplemented} $A_\infty${-Algebras}}, journal = {Matemati\v{c}eskie zametki}, pages = {55--77}, publisher = {mathdoc}, volume = {99}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a5/} }
TY - JOUR AU - S. V. Lapin TI - Homotopy Properties of $\infty$-Simplicial Coalgebras and Homotopy Unital Supplemented $A_\infty$-Algebras JO - Matematičeskie zametki PY - 2016 SP - 55 EP - 77 VL - 99 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a5/ LA - ru ID - MZM_2016_99_1_a5 ER -
S. V. Lapin. Homotopy Properties of $\infty$-Simplicial Coalgebras and Homotopy Unital Supplemented $A_\infty$-Algebras. Matematičeskie zametki, Tome 99 (2016) no. 1, pp. 55-77. http://geodesic.mathdoc.fr/item/MZM_2016_99_1_a5/
[1] T. V. Kadeishvili, “K teorii gomologii rassloennykh prostranstv”, UMN, 35:3 (1980), 183–188 | MR | Zbl
[2] K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Lagrangian Intersection Floer Theory: Anomaly and Obstruction. I, AMS/IP Stud. Adv. Math., Amer. Math. Soc., Providence, RI, 2009 | MR | Zbl
[3] S. V. Lapin, “Differentsialnye moduli Li nad iskrivlennymi krashennymi koalgebrami i $\infty$-simplitsialnye moduli”, Matem. zametki, 96:5 (2014), 709–731 | DOI | MR | Zbl
[4] V. Lyubashenko, Homotopy Unital $A_\infty$-Algebras, 2012, arXiv: 1205.6058v1
[5] V. K. A. M. Gugenheim, L. A. Lambe, J. D. Stasheff, “Perturbation theory in differential homological algebra. II”, Illinois J. Math., 35:3 (1991), 357–373 | MR | Zbl
[6] J.-L. Loday, B. Vallette, Algebraic Operads, Grundlehren Math. Wiss., 346, Springer-Verlag, Berlin, 2012 | MR | Zbl