Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_100_6_a8, author = {R. M. Matuev and I. A. Taimanov}, title = {The {Moutard} {Transformation} of {Two-Dimensional} {Dirac} {Operators} and the {Conformal} {Geometry} of {Surfaces} in {Four-Dimensional} {Space}}, journal = {Matemati\v{c}eskie zametki}, pages = {868--880}, publisher = {mathdoc}, volume = {100}, number = {6}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a8/} }
TY - JOUR AU - R. M. Matuev AU - I. A. Taimanov TI - The Moutard Transformation of Two-Dimensional Dirac Operators and the Conformal Geometry of Surfaces in Four-Dimensional Space JO - Matematičeskie zametki PY - 2016 SP - 868 EP - 880 VL - 100 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a8/ LA - ru ID - MZM_2016_100_6_a8 ER -
%0 Journal Article %A R. M. Matuev %A I. A. Taimanov %T The Moutard Transformation of Two-Dimensional Dirac Operators and the Conformal Geometry of Surfaces in Four-Dimensional Space %J Matematičeskie zametki %D 2016 %P 868-880 %V 100 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a8/ %G ru %F MZM_2016_100_6_a8
R. M. Matuev; I. A. Taimanov. The Moutard Transformation of Two-Dimensional Dirac Operators and the Conformal Geometry of Surfaces in Four-Dimensional Space. Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 868-880. http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a8/
[1] I. A. Taimanov, “Preobrazovanie Mutara dvumernykh operatorov Diraka i geometriya Mebiusa”, Matem. zametki, 97:1 (2015), 129–141 | DOI | MR | Zbl
[2] Yu. Delong, Q. P. Liu, Sh. Wang, “Darboux transformation for the modified Veselov–Novikov equation”, J. Phys. A, 35:16 (2001), 3779–3785 | MR
[3] I. A. Taimanov, “Surfaces in the four-space and the Davey–Stewartson equations”, J. Geom. Phys., 58:8 (2006), 1235–1256 | DOI | MR | Zbl
[4] I. A. Taimanov, “Dvumernyi operator Diraka i teoriya poverkhnostei”, UMN, 61:1 (367) (2006), 85–164 | DOI | MR | Zbl
[5] B. G. Konopelchenko, “Weierstrass representations for surfaces in 4D spaces and their integrable deformations via DS hierarchy”, Ann. Global Anal. Geom., 18:1 (2000), 61–74 | DOI | MR | Zbl
[6] I. A. Taimanov, “Modified Novikov–Veselov equation and differential geometry of surfaces”, Solitons, Geometry, and Topology: on the Crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Amer. Math. Soc., 1997, 133–151 | MR | Zbl
[7] I. A. Taimanov, “Predstavlenie Veiershtrassa zamknutykh poverkhnostei v $\mathbb{R}^3$”, Funkts. analiz i ego pril., 32:4 (1998), 49–62 | DOI | MR | Zbl
[8] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Uravnenie Shredingera v periodicheskom pole i rimanovy poverkhnosti”, Dokl. AN SSSR, 229:1 (1976), 15–19 | Zbl
[9] P. G. Grinevich, I. A. Taimanov, “Infinitesimal Darboux transformations of the spectral curves of tori in the four-space”, Int. Math. Res. Not., 2007, no. 2, Art. ID rnm005 | Zbl
[10] P. G. Grinevich, M. U. Schmidt, “Conformal invariant functionals of tori into $\mathbb R^3$”, J. Geom. Phys., 26:1-2 (1998), 51–78 | DOI | MR | Zbl
[11] F. C. Marques, A. Neves, “Min-Max theory and the Willmore conjecture”, Ann. Math., 179:2 (2014), 683–782 | DOI | MR | Zbl
[12] I. A. Taimanov, “Conformal invariant functionals of tori into $\mathbb R^3$”, Int. Math. Res. Not., 2005, no. 2, 103–120 | DOI | Zbl