The Moutard Transformation of Two-Dimensional Dirac Operators and the Conformal Geometry of Surfaces in Four-Dimensional Space
Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 868-880.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Moutard transformation for the two-dimensional Dirac operator with complex-valued potential is constructed. It is shown that this transformation binds the potentials of Weierstrass representations of the surfaces related by the composition of inversion and reflection with respect to the axis. An explicit analytic example of a transformation leading to the appearance of double points on the spectral curve of the Dirac operator is described analytically.
Keywords: two-dimensional Dirac operator, Weierstrass representation, Floquet functions, spectral curve.
Mots-clés : Moutard transformation, inversion
@article{MZM_2016_100_6_a8,
     author = {R. M. Matuev and I. A. Taimanov},
     title = {The {Moutard} {Transformation} of {Two-Dimensional} {Dirac} {Operators} and the {Conformal} {Geometry} of {Surfaces} in {Four-Dimensional} {Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {868--880},
     publisher = {mathdoc},
     volume = {100},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a8/}
}
TY  - JOUR
AU  - R. M. Matuev
AU  - I. A. Taimanov
TI  - The Moutard Transformation of Two-Dimensional Dirac Operators and the Conformal Geometry of Surfaces in Four-Dimensional Space
JO  - Matematičeskie zametki
PY  - 2016
SP  - 868
EP  - 880
VL  - 100
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a8/
LA  - ru
ID  - MZM_2016_100_6_a8
ER  - 
%0 Journal Article
%A R. M. Matuev
%A I. A. Taimanov
%T The Moutard Transformation of Two-Dimensional Dirac Operators and the Conformal Geometry of Surfaces in Four-Dimensional Space
%J Matematičeskie zametki
%D 2016
%P 868-880
%V 100
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a8/
%G ru
%F MZM_2016_100_6_a8
R. M. Matuev; I. A. Taimanov. The Moutard Transformation of Two-Dimensional Dirac Operators and the Conformal Geometry of Surfaces in Four-Dimensional Space. Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 868-880. http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a8/

[1] I. A. Taimanov, “Preobrazovanie Mutara dvumernykh operatorov Diraka i geometriya Mebiusa”, Matem. zametki, 97:1 (2015), 129–141 | DOI | MR | Zbl

[2] Yu. Delong, Q. P. Liu, Sh. Wang, “Darboux transformation for the modified Veselov–Novikov equation”, J. Phys. A, 35:16 (2001), 3779–3785 | MR

[3] I. A. Taimanov, “Surfaces in the four-space and the Davey–Stewartson equations”, J. Geom. Phys., 58:8 (2006), 1235–1256 | DOI | MR | Zbl

[4] I. A. Taimanov, “Dvumernyi operator Diraka i teoriya poverkhnostei”, UMN, 61:1 (367) (2006), 85–164 | DOI | MR | Zbl

[5] B. G. Konopelchenko, “Weierstrass representations for surfaces in 4D spaces and their integrable deformations via DS hierarchy”, Ann. Global Anal. Geom., 18:1 (2000), 61–74 | DOI | MR | Zbl

[6] I. A. Taimanov, “Modified Novikov–Veselov equation and differential geometry of surfaces”, Solitons, Geometry, and Topology: on the Crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Amer. Math. Soc., 1997, 133–151 | MR | Zbl

[7] I. A. Taimanov, “Predstavlenie Veiershtrassa zamknutykh poverkhnostei v $\mathbb{R}^3$”, Funkts. analiz i ego pril., 32:4 (1998), 49–62 | DOI | MR | Zbl

[8] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Uravnenie Shredingera v periodicheskom pole i rimanovy poverkhnosti”, Dokl. AN SSSR, 229:1 (1976), 15–19 | Zbl

[9] P. G. Grinevich, I. A. Taimanov, “Infinitesimal Darboux transformations of the spectral curves of tori in the four-space”, Int. Math. Res. Not., 2007, no. 2, Art. ID rnm005 | Zbl

[10] P. G. Grinevich, M. U. Schmidt, “Conformal invariant functionals of tori into $\mathbb R^3$”, J. Geom. Phys., 26:1-2 (1998), 51–78 | DOI | MR | Zbl

[11] F. C. Marques, A. Neves, “Min-Max theory and the Willmore conjecture”, Ann. Math., 179:2 (2014), 683–782 | DOI | MR | Zbl

[12] I. A. Taimanov, “Conformal invariant functionals of tori into $\mathbb R^3$”, Int. Math. Res. Not., 2005, no. 2, 103–120 | DOI | Zbl