Volume and Entropy in Abstract Analytic Number Theory and Thermodynamics
Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 855-867.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop the recent research [1] and introduce the notions of volume and entropy in abstract analytic number theory. The introduction of negative numbers in the generalized partition problem, together with the meaning of such a generalization in some applications of the theory, is discussed.
Keywords: number theory, thermodynamics, statistical physics, entropy.
Mots-clés : volume
@article{MZM_2016_100_6_a7,
     author = {V. P. Maslov and S. Yu. Dobrokhotov and V. E. Nazaikinskii},
     title = {Volume and {Entropy} in {Abstract} {Analytic} {Number} {Theory} and {Thermodynamics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {855--867},
     publisher = {mathdoc},
     volume = {100},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a7/}
}
TY  - JOUR
AU  - V. P. Maslov
AU  - S. Yu. Dobrokhotov
AU  - V. E. Nazaikinskii
TI  - Volume and Entropy in Abstract Analytic Number Theory and Thermodynamics
JO  - Matematičeskie zametki
PY  - 2016
SP  - 855
EP  - 867
VL  - 100
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a7/
LA  - ru
ID  - MZM_2016_100_6_a7
ER  - 
%0 Journal Article
%A V. P. Maslov
%A S. Yu. Dobrokhotov
%A V. E. Nazaikinskii
%T Volume and Entropy in Abstract Analytic Number Theory and Thermodynamics
%J Matematičeskie zametki
%D 2016
%P 855-867
%V 100
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a7/
%G ru
%F MZM_2016_100_6_a7
V. P. Maslov; S. Yu. Dobrokhotov; V. E. Nazaikinskii. Volume and Entropy in Abstract Analytic Number Theory and Thermodynamics. Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 855-867. http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a7/

[1] V. P. Maslov, V. E. Nazaikinskii, “Conjugate Variables in Analytic Number Theory. Phase Space and Lagrangian Manifolds”, Math. Notes, 100:3 (2016), 421–428 | DOI

[2] A. G. Postnikov, Vvedenie v analiticheskuyu teoriyu chisel, Nauka, M., 1971 | MR | Zbl

[3] J. Knopfmacher, Abstract Analytic Number Theory, North-Holland Math. Library, 12, North-Holland Publ., Amsterdam, 1975 | MR | Zbl

[4] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, URSS, M., 2004

[5] L. D. Landau, E. M. Lifshits, Statisticheskaya fizika, Fizmatlit, Moskva, 2003

[6] G. H. Hardy, S. Ramanujan, “Asymptotic formulae in combinatory analysis”, Proc. London Math. Soc. (2), 17 (1917), 75–115 | Zbl

[7] H. Rademacher, “On the partition function $p(n)$”, Proc. London Math. Soc. (2), 43 (1937), 241–254 | MR | Zbl

[8] P. Erdős, J. Lehner, “The distribution of the number of summands in the partitions of a positive integer”, Duke Math. J., 8 (1941), 335–345 | DOI | MR | Zbl

[9] H. Weyl, “Über die asymptotische Verteilung der Eigenwerte”, Gött. Nachr., 1911 (1911), 110–117 | Zbl

[10] R. Courant, “Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik”, Math. Z., 7 (1920), 1–57 | DOI | MR | Zbl

[11] S. Agmon, “Asymptotic formulas with remainder estimates for eigenvalues of elliptic operators”, Arch. Rational Mech. Anal., 28 (1968), 165–183 | DOI | MR | Zbl

[12] A. M. Vershik, “Statisticheskaya mekhanika kombinatornykh razbienii i ikh predelnye konfiguratsii”, Funkts. analiz i ego pril., 30:2 (1996), 19–39 | DOI | MR | Zbl

[13] A. M. Vershik, “Predelnoe raspredelenie energii kvantovogo idealnogo gaza s tochki zreniya teorii razbienii naturalnykh chisel”, UMN, 52:2 (314) (1997), 139–146 | DOI | MR | Zbl

[14] A. M. Vershik, G. A. Freiman, Yu. V. Yakubovich, “Lokalnaya predelnaya teorema dlya sluchainykh razbienii naturalnykh chisel”, Teoriya veroyatn. i ee primen., 44:3 (1999), 506–525 | DOI | MR | Zbl

[15] V. P. Maslov, “Ob odnoi obschei teoreme teorii mnozhestv, privodyaschei k raspredeleniyu Gibbsa, Boze–Einshteina, Pareto i zakonu Tsipfa–Mandelbrota dlya fondovogo rynka”, Matem. zametki, 78:6 (2005), 870–877 | DOI | MR | Zbl

[16] V. P. Maslov, Kvantovaya ekonomika, Nauka, M., 2005

[17] V. P. Maslov, V. E. Nazaikinskii, “O raspredelenii tselochislennykh sluchainykh velichin, svyazannykh odnim lineinym neravenstvom. I”, Matem. zametki, 83:2 (2008), 232–263 | DOI | MR | Zbl

[18] V. P. Maslov, V. E. Nazaikinskii, “O raspredelenii tselochislennykh sluchainykh velichin, svyazannykh odnim lineinym neravenstvom. II”, Matem. zametki, 83:3 (2008), 381–401 | DOI | MR | Zbl

[19] V. P. Maslov, V. E. Nazaikinskii, “O raspredelenii tselochislennykh sluchainykh velichin, svyazannykh odnim lineinym neravenstvom. III”, Matem. zametki, 83:6 (2008), 880–898 | DOI | MR | Zbl

[20] V. P. Maslov, V. E. Nazaikinskii, “On the rate of convergence to the Bose–Einstein distribution”, Math. Notes, 99:1-2 (2016), 95–109 | DOI | MR | Zbl

[21] V. P. Maslov, V. E. Nazaikinskii, “Disinformation theory for bosonic computational media”, Math. Notes, 99:5-6 (2016), 895–900 | DOI | MR | Zbl

[22] V. P. Maslov, V. E. Nazaikinskii, “Bose–Einstein distribution as a problem of analytic number theory: the case of less than two degrees of freedom”, Math. Notes, 100:1-2 (2016), 245–255 | DOI

[23] “Svyaz analiticheskoi teorii chisel s ponyatiem dezinformatsii”, Matem. zametki, 100:4 (2016), 553–565 | DOI

[24] V. P. Maslov, “New Approach to Classical Thermodynamics”, Math. Notes, 100:1 (2016), 154–185 | DOI