Approximation of Solutions of the Two-Dimensional Wave Equation with Variable Velocity and Localized Right-Hand Side Using Some ``Simple'' Solutions
Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 825-837.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic solutions based on the characteristics and the modified Maslov canonical operator of the two-dimensional wave equation with variable coefficients and right-hand side corresponding to: (a) an instantaneous source; (b) a rapidly acting, but “time spread,” source, are compared. An algorithm for approximating a (more complicated) solution of problem (b) by linear combinations of the derivatives of the (simpler) solution of problem (a) is proposed. Numerical calculations showing the accuracy of this approximation are presented. The replacement of the solutions of problem (b) by those of problem (a) becomes especially important in the case where the wave equation is considered in the domain with boundary on which the velocity of the wave equation vanishes. Then the characteristics of the problem become singular (nonstandard) and solutions of type (a) generalize to the case referred to above in a much simpler and effective way than solutions of type (b). Such a situation arises in problems where long waves (for example, tsunami waves) are incident on a sloping seashore.
Keywords: asymptotic solution, wave equation, Maslov canonical operator, nonstandard characteristics.
@article{MZM_2016_100_6_a4,
     author = {S. Yu. Dobrokhotov and A. Yu. Anikin},
     title = {Approximation of {Solutions} of the {Two-Dimensional} {Wave} {Equation} with {Variable} {Velocity} and {Localized} {Right-Hand} {Side} {Using} {Some} {``Simple''} {Solutions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {825--837},
     publisher = {mathdoc},
     volume = {100},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a4/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
AU  - A. Yu. Anikin
TI  - Approximation of Solutions of the Two-Dimensional Wave Equation with Variable Velocity and Localized Right-Hand Side Using Some ``Simple'' Solutions
JO  - Matematičeskie zametki
PY  - 2016
SP  - 825
EP  - 837
VL  - 100
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a4/
LA  - ru
ID  - MZM_2016_100_6_a4
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%A A. Yu. Anikin
%T Approximation of Solutions of the Two-Dimensional Wave Equation with Variable Velocity and Localized Right-Hand Side Using Some ``Simple'' Solutions
%J Matematičeskie zametki
%D 2016
%P 825-837
%V 100
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a4/
%G ru
%F MZM_2016_100_6_a4
S. Yu. Dobrokhotov; A. Yu. Anikin. Approximation of Solutions of the Two-Dimensional Wave Equation with Variable Velocity and Localized Right-Hand Side Using Some ``Simple'' Solutions. Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 825-837. http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a4/

[1] C. C. Mei, The Applied Dynamics of Ocean Surface Waves, World Sci., Singapore, 1989 | Zbl

[2] E. N. Pelinovskii, Gidrodinamika voln tsunami, IPF RAN, Nizhnii Novgorod, 1996

[3] Yu. I. Shokin, L. B. Chubarov, An. G. Marchuk, K. V. Simonov, Vychislitelnyi eksperiment v probleme tsunami, Nauka, Novosibirsk, 1989 | Zbl

[4] S. Yu. Dobrokhotov, A. I. Shafarevich, B. Tirozzi, “Localized wave and vortical solutions to linear hyperbolic systems and their application to the linear shallow water equations”, Russ. J. Math. Phys., 15:2 (2008), 192–221 | DOI | MR | Zbl

[5] S. Yu. Dobrokhotov, R. Nekrasov, B. Tirozzi, “Asymptotic solutions of the linear shallow-water equations with localized initial data”, J. Engng. Math., 69:2 (2011), 225–242 | DOI | MR | Zbl

[6] S. F. Dotsenko, B. Yu. Sergeevskii, L. V. Cherkasov, “Prostranstvennye volny tsunami, vyzvannye znakoperemennym smescheniem poverkhnosti okeana”, Issledovaniya tsunami, No 1, M., 1986, 7–14

[7] S. Ya. Sekerzh-Zenkovich, “Simple asymptotic solution to the Cauchy–Poisson problem for leading waves”, Russ. J. Math. Phys., 16:2 (2009), 315–322 | DOI | MR | Zbl

[8] D. Bianchi, S. Dobrokhotov, B. Tirozzi, “Asymptotics of localized solutions of the one-dimensional wave equation with variable velocity. II. Taking into account a source on the right-hand side and a weak dispersion”, Russ. J. Math. Phys., 15:4 (2008), 427–446 | DOI | MR | Zbl

[9] S. Dobrokhotov, D. Minenkov, V. Nazaykinskii, B. Tirozzi, “Functions of noncommuting operators in an asymptotic problem for a 2D wave equation with variable velocity and localized right-hand side”, Operator Theory, Pseudo-Differential Equations, and Mathematical Physics, Oper. Theory Adv. Appl., 228, Birkhäuser, Basel, 2013, 95–125 | MR | Zbl

[10] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[11] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR | Zbl

[12] S. Yu. Dobrokhotov, S. Ya. Sekerzh-Zenkovich, B. Tirotstsi, T. Ya. Tudorovskii, “Opisanie rasprostraneniya voln tsunami na osnove kanonicheskogo operatora Maslova”, Dokl. RAN, 409:2 (2006), 171–175 | Zbl

[13] S. Yu. Dobrokhotov, S. Ya. Sekerzh-Zenkovich, B. Tirozzi, B. Volkov, “Explicit asymptotics for tsunami waves in framework of the piston model”, Russ. J. Earth Sci., 8 (2006), ES4003 | DOI

[14] S. Wang, “The propagation of the leading wave”, ASCE Specialty Conference on Coastal Hydrodynamics (Newark, DE, June 29–July 1), University of Delaware, 1987, 657–670

[15] S. A. Sergeev, A. A. Tolchennikov, “Ob “operatorakh rozhdeniya” v zadache o lokalizovannykh resheniyakh linearizovannykh uravnenii melkoi vody s regulyarnymi i osobymi kharakteristikami”, Matem. zametki, 100:6 (2016), 918–929

[16] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirozzi, “Two-dimensional wave equation with degeneration on the curvilinear boundary of the domain and asymptotic solutions with localized initial data”, Russ. J. Math. Phys., 20:4 (2013), 389–401 | DOI | MR | Zbl

[17] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Asimptotiki volnovykh i vikhrevykh lokalizovannykh reshenii linearizovannykh uravnenii melkoi vody”, Aktualnye problemy mekhaniki, Sb. rabot, posvyaschennyi 50-letiyu Instituta problem mekhaniki im. A. Yu. Ishlinskogo RAN, Nauka, M., 2015, 98–139