The Cauchy Problem for the Wave Equation on Homogeneous Trees
Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 923-931.

Voir la notice de l'article provenant de la source Math-Net.Ru

The wave equation on an infinite homogeneous tree is studied. For the Laplace operator, the Kirchhoff conditions are taken as the matching conditions at the vertices. A solution of the Cauchy problem is obtained and the behavior of the wave energy as time tends to infinity is described. It is shown that part of the energy does not go to infinity, but remains on the edges of the trees. The part of the energy remaining on the edges depends on the branching number.
Keywords: wave equation on a graph, distribution of energy, spectrum of the second derivative operator on a homogeneous tree.
@article{MZM_2016_100_6_a13,
     author = {A. V. Tsvetkova and A. I. Shafarevich},
     title = {The {Cauchy} {Problem} for the {Wave} {Equation} on {Homogeneous} {Trees}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {923--931},
     publisher = {mathdoc},
     volume = {100},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a13/}
}
TY  - JOUR
AU  - A. V. Tsvetkova
AU  - A. I. Shafarevich
TI  - The Cauchy Problem for the Wave Equation on Homogeneous Trees
JO  - Matematičeskie zametki
PY  - 2016
SP  - 923
EP  - 931
VL  - 100
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a13/
LA  - ru
ID  - MZM_2016_100_6_a13
ER  - 
%0 Journal Article
%A A. V. Tsvetkova
%A A. I. Shafarevich
%T The Cauchy Problem for the Wave Equation on Homogeneous Trees
%J Matematičeskie zametki
%D 2016
%P 923-931
%V 100
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a13/
%G ru
%F MZM_2016_100_6_a13
A. V. Tsvetkova; A. I. Shafarevich. The Cauchy Problem for the Wave Equation on Homogeneous Trees. Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 923-931. http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a13/

[1] G. Berkolaiko, P. Kuchment, Introduction to Quantum Graphs, Math. Surveys Monogr., 186, Amer. Math. Soc., Providence, RI, 2013 | MR | Zbl

[2] A. V. Sobolev, M. Solomyak, “Shrödinger operators on homogeneous metric trees: spectrum in gaps”, Rev. Math. Phys., 14:5 (2002), 421–468 | DOI | MR | Zbl

[3] M. Solomyak, “Laplace and Shrödinger operators on regular metric trees: the discrete spectrum case”, Function Spaces, Differential Operators and Nonlinear Analysis, Birkhäuser, Basel, 2003, 161–181 | DOI | MR | Zbl

[4] J. Brüning, V. A. Geyler, “Scattering on compact manifolds with infinitely thin horns”, J. Math. Phys., 44:2 (2003), 371–405 | DOI | MR | Zbl

[5] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, S. A. Shabrov, Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004 | MR | Zbl

[6] A. I. Shafarevich, A. V. Tsvetkova, “Solutions of the wave equation on hybrid spaces of constant curvature”, Russ. J. Math. Phys., 21:4 (2014), 509–520 | DOI | MR | Zbl

[7] V. L. Chernyshev, A. I. Shafarevich, “Semiclassical asymptotics and statistical properties of Gaussian packets for the nonstationary Schrödinger equation on a geometric graph”, Russ. J. Math. Phys., 15:1 (2008), 25–34 | DOI | MR | Zbl

[8] A. A. Tolchennikov, V. L. Chernyshev, A. I. Shafarevich, “Asimptoticheskie svoistva i klassicheskie dinamicheskie sistemy v kvantovykh zadachakh na singulyarnykh prostranstvakh”, Nelineinaya dinam., 6:3 (2010), 623–638

[9] V. L. Chernyshev, A. I. Shafarevich, “Statistics of Gaussian packets on metric and decorated graphs”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372:2007 (2014), 20130145 | MR

[10] O. V. Korovina, V. L. Pryadiev, “Struktura resheniya smeshannoi zadachi dlya volnovogo uravneniya na kompaktnom geometricheskom grafe v sluchae nenulevoi nachalnoi skorosti”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 9:3 (2009), 37–46