Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_100_6_a10, author = {O. A. Petruschov}, title = {Asymptotic {Expansion} of {Certain} {Power} {Series} with {Multiplicative} {Coefficients} near the {Unit} {Circle}}, journal = {Matemati\v{c}eskie zametki}, pages = {887--899}, publisher = {mathdoc}, volume = {100}, number = {6}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a10/} }
TY - JOUR AU - O. A. Petruschov TI - Asymptotic Expansion of Certain Power Series with Multiplicative Coefficients near the Unit Circle JO - Matematičeskie zametki PY - 2016 SP - 887 EP - 899 VL - 100 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a10/ LA - ru ID - MZM_2016_100_6_a10 ER -
O. A. Petruschov. Asymptotic Expansion of Certain Power Series with Multiplicative Coefficients near the Unit Circle. Matematičeskie zametki, Tome 100 (2016) no. 6, pp. 887-899. http://geodesic.mathdoc.fr/item/MZM_2016_100_6_a10/
[1] G. H. Hardy, J. E. Littlewood, “Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes”, Acta Math., 41:1 (1916), 119–196 | DOI | MR
[2] I. Katai, “On oscillations of number-theoretic functions”, Acta Arith., 13 (1967), 107–122 | MR | Zbl
[3] S. Gerhold, “Asymptotic estimates for some number-theoretic power series”, Acta Arith., 142:2 (2010), 187–196 | DOI | MR | Zbl
[4] W. D. Banks, F. Luca, I. E. Shparlinski, “Irrationality of power series for various number theoretic functions”, Manuscripta Math., 117:2 (2005), 183–197 | DOI | MR | Zbl
[5] S. Wigert, “Sur la série de Lambert et son application à la théorie des nombres”, Acta Math., 41:1 (1916), 197–218 | DOI | MR
[6] O. Petrushov, “On the behavior close to the unit circle of the power series with Möbius function coefficients”, Acta Arith., 164:2 (2014), 119–136 | DOI | MR | Zbl
[7] E. Knepp, Ellipticheskie krivye, Faktorial Press, M., 2004 | Zbl
[8] P. Flajolet, X. Gourdon, P. Dumas, “Mellin transforms and asymptotics: harmonic sums”, Theoret. Comput. Sci., 144:1-2 (1995), 3–58 | DOI | MR | Zbl
[9] G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, Oxford Univ. Press, Oxford, 1979 | MR | Zbl
[10] H. L. Montgomery, R. C. Vaughan, Multiplicative Number Theory. I. Classical Theory, Cambridge Stud. in Adv. Math., 97, Cambridge Univ. press, Cambridge, 2006 | MR