Fractional Parts of the Function~$x/n$
Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 744-756
Voir la notice de l'article provenant de la source Math-Net.Ru
Asymptotic formulas for sums of values of some class of smooth functions of fractional parts of numbers of the form $x/n$, where the parameter $x$ increases unboundedly and the integer $n$ ranges over various subsets of the interval $[1,x]$, are obtained.
Keywords:
fractional parts, asymptotic behavior, divisor problem, method of trigonometric sums.
@article{MZM_2016_100_5_a9,
author = {A. V. Shubin},
title = {Fractional {Parts} of the {Function~}$x/n$},
journal = {Matemati\v{c}eskie zametki},
pages = {744--756},
publisher = {mathdoc},
volume = {100},
number = {5},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a9/}
}
A. V. Shubin. Fractional Parts of the Function~$x/n$. Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 744-756. http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a9/