Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_100_5_a9, author = {A. V. Shubin}, title = {Fractional {Parts} of the {Function~}$x/n$}, journal = {Matemati\v{c}eskie zametki}, pages = {744--756}, publisher = {mathdoc}, volume = {100}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a9/} }
A. V. Shubin. Fractional Parts of the Function~$x/n$. Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 744-756. http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a9/
[1] B. Saffari, R. C. Vaughan, “On the fractional parts of $x/n$ and related sequences. II”, Ann. Inst. Fourier (Grenoble), 27:2 (1977), 1–30 | DOI | MR | Zbl
[2] A. Mercier, “Sums containing the fractional parts of numbers”, Rocky Mountain J. Math., 15:2 (1985), 513–520 | DOI | MR
[3] M. Ishibashi, S. Kanemitsu, “Fractional part sums and divisor functions. I”, Number Theory and Combinatorics, World Sci. Publ., Singapore, 1985, 119–183 | MR | Zbl
[4] R. A. MacLeod, “Fractional part sums and divisor functions”, J. Number Theory, 14:2 (1982), 185–227 | DOI | MR | Zbl
[5] R. A. Smith, M. V. Subbarao, “The average number of divisors in an arithmetic progression”, Canad. Math. Bull., 24 (1981), 37–41 | DOI | MR | Zbl
[6] A. Mercier, W. G. Nowak, “On the asymptotic behaviour of sums $\sum g(n)\{x/n\}k$”, Monatsh. Math., 99:3 (1985), 213–221 | DOI | MR | Zbl
[7] A. Ayyad, T. Cochrane, Z. Zheng, “The congruence $x_1x_2\equiv x_3x_4\pmod{p}$, the equation $x_1x_2\equiv x_3x_4$, and mean values of character sums”, J. Number Theory, 59:2 (1996), 398–413 | DOI | MR | Zbl
[8] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR | Zbl
[9] A. A. Karatsuba, “Ob odnom svoistve mnozhestva prostykh chisel”, UMN, 66:2 (398) (2011), 3–14 | DOI | MR | Zbl
[10] M. E. Changa, Metody analiticheskoi teorii chisel, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2013
[11] E. Naslund, “The median largest prime factor”, J. Number Theory, 141 (2014), 109–118 | DOI | MR | Zbl