Non-Hermitian Matrices of Even Order and Neutral Subspaces of Half the Dimension
Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 739-743
Cet article a éte moissonné depuis la source Math-Net.Ru
Consider the sesquilinear matrix equation $X^*DX+AX+X^*B+C=0$, where all the matrices are square and have the same order $n$. With this equation, we associate a block matrix $M$ of double order $2n$. The solvability of the above equation turns out to be related to the existence of $n$-dimensional neutral subspaces for the matrix $M$. We indicate sufficiently general conditions ensuring the existence of such subspaces.
Keywords:
sesquilinear matrix equation, neutral subspace, congruence, cosquare
Mots-clés : Jordan form.
Mots-clés : Jordan form.
@article{MZM_2016_100_5_a8,
author = {Kh. D. Ikramov},
title = {Non-Hermitian {Matrices} of {Even} {Order} and {Neutral} {Subspaces} of {Half} the {Dimension}},
journal = {Matemati\v{c}eskie zametki},
pages = {739--743},
year = {2016},
volume = {100},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a8/}
}
Kh. D. Ikramov. Non-Hermitian Matrices of Even Order and Neutral Subspaces of Half the Dimension. Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 739-743. http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a8/
[1] Kh. D. Ikramov, “O razreshimosti odnogo klassa polutoralineinykh matrichnykh uravnenii”, Dokl. RAN, 454:3 (2014), 265–267 | DOI | Zbl
[2] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge, 2012 | MR
[3] R. A. Horn, V. V. Sergeichuk, “Canonical forms for complex matrices congruence and *congruence”, Linear Algebra Appl., 416:2-3 (2006), 1010–1032 | DOI | MR | Zbl