Non-Hermitian Matrices of Even Order and Neutral Subspaces of Half the Dimension
Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 739-743.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider the sesquilinear matrix equation $X^*DX+AX+X^*B+C=0$, where all the matrices are square and have the same order $n$. With this equation, we associate a block matrix $M$ of double order $2n$. The solvability of the above equation turns out to be related to the existence of $n$-dimensional neutral subspaces for the matrix $M$. We indicate sufficiently general conditions ensuring the existence of such subspaces.
Keywords: sesquilinear matrix equation, neutral subspace, congruence, cosquare
Mots-clés : Jordan form.
@article{MZM_2016_100_5_a8,
     author = {Kh. D. Ikramov},
     title = {Non-Hermitian {Matrices} of {Even} {Order} and {Neutral} {Subspaces} of {Half} the {Dimension}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {739--743},
     publisher = {mathdoc},
     volume = {100},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a8/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Non-Hermitian Matrices of Even Order and Neutral Subspaces of Half the Dimension
JO  - Matematičeskie zametki
PY  - 2016
SP  - 739
EP  - 743
VL  - 100
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a8/
LA  - ru
ID  - MZM_2016_100_5_a8
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Non-Hermitian Matrices of Even Order and Neutral Subspaces of Half the Dimension
%J Matematičeskie zametki
%D 2016
%P 739-743
%V 100
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a8/
%G ru
%F MZM_2016_100_5_a8
Kh. D. Ikramov. Non-Hermitian Matrices of Even Order and Neutral Subspaces of Half the Dimension. Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 739-743. http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a8/

[1] Kh. D. Ikramov, “O razreshimosti odnogo klassa polutoralineinykh matrichnykh uravnenii”, Dokl. RAN, 454:3 (2014), 265–267 | DOI | Zbl

[2] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge, 2012 | MR

[3] R. A. Horn, V. V. Sergeichuk, “Canonical forms for complex matrices congruence and *congruence”, Linear Algebra Appl., 416:2-3 (2006), 1010–1032 | DOI | MR | Zbl