An Extremal Problem for the Derivative of a Rational Function
Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 732-738.

Voir la notice de l'article provenant de la source Math-Net.Ru

Erdős' well-known problem on the maximum absolute value of the derivative of a polynomial on a connected lemniscate is extended to the case of a rational function. Moreover, under the assumption that certain lemniscates are connected, a sharp upper bound for the absolute value of the derivative of a rational function at any point in the plane different from the poles is found. The role of the extremal function is played by an appropriate Zolotarev fraction.
Keywords: rational function, lemniscate, Riemann surface, symmetrization.
Mots-clés : Zolotarev fraction
@article{MZM_2016_100_5_a7,
     author = {V. N. Dubinin},
     title = {An {Extremal} {Problem} for the {Derivative} of a {Rational} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {732--738},
     publisher = {mathdoc},
     volume = {100},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a7/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - An Extremal Problem for the Derivative of a Rational Function
JO  - Matematičeskie zametki
PY  - 2016
SP  - 732
EP  - 738
VL  - 100
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a7/
LA  - ru
ID  - MZM_2016_100_5_a7
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T An Extremal Problem for the Derivative of a Rational Function
%J Matematičeskie zametki
%D 2016
%P 732-738
%V 100
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a7/
%G ru
%F MZM_2016_100_5_a7
V. N. Dubinin. An Extremal Problem for the Derivative of a Rational Function. Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 732-738. http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a7/

[1] W. K. Hayman, Research Problems in Function Theory, Univ. of London. The Athlone Press, London, 1967 | MR | Zbl

[2] P. Erdös, Some of My Favorite Unsolved Problems. A Tribute to Paul Erdös, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[3] Ch. Pommerenke, “On the derivate of a polynomial”, Michigan Math. J., 6:4 (1959), 373–375 | DOI | MR | Zbl

[4] A. Eremenko, L. Lempert, “An extremal problem for polynomials”, Proc. Amer. Math. Soc., 122:1 (1994), 191–193 | DOI | MR | Zbl

[5] A. Eremenko, “A Markov-type inequality for arbitrary plane continua”, Proc. Amer. Math. Soc., 135:5 (2007), 1505–1510 | DOI | MR | Zbl

[6] V. N. Dubinin, “Neravenstvo markovskogo tipa i nizhnyaya otsenka modulei kriticheskikh znachenii polinomov”, Dokl. PAN, 451:5 (2013), 495–497 | DOI | MR | Zbl

[7] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl

[8] A. B. Bogatyrev, “Chebyshevskoe predstavlenie ratsionalnykh funktsii”, Matem. sb., 201:11 (2010), 19–40 | DOI | MR | Zbl

[9] A. B. Bogatyrev, How Many Zolotarev Fractions are There?, 2015, arXiv: 1511.05346

[10] M. M. Gkhashim, V. N. Malozemov, G. Sh. Tamasyan, Drobi Zolotareva. Seminar po konstruktivnomu negladkomu analizu i nedifferentsiruemoi optimizatsii “SNSA”, , 2016 http://www.apmath.spbu.ru/cnsa/

[11] V. N. Dubinin, “Krugovaya simmetrizatsiya kondensatorov na rimanovykh poverkhnostyakh”, Matem. sb., 206:1 (2015), 69–96 | DOI | MR | Zbl

[12] V. N. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009