An Extremal Problem for the Derivative of a Rational Function
Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 732-738
Voir la notice de l'article provenant de la source Math-Net.Ru
Erdős' well-known problem on the maximum absolute value of the derivative of a polynomial on a connected lemniscate is extended to the case of a rational function. Moreover, under the assumption that certain lemniscates are connected, a sharp upper bound for the absolute value of the derivative of a rational function at any point in the plane different from the poles is found. The role of the extremal function is played by an appropriate Zolotarev fraction.
Keywords:
rational function, lemniscate, Riemann surface, symmetrization.
Mots-clés : Zolotarev fraction
Mots-clés : Zolotarev fraction
@article{MZM_2016_100_5_a7,
author = {V. N. Dubinin},
title = {An {Extremal} {Problem} for the {Derivative} of a {Rational} {Function}},
journal = {Matemati\v{c}eskie zametki},
pages = {732--738},
publisher = {mathdoc},
volume = {100},
number = {5},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a7/}
}
V. N. Dubinin. An Extremal Problem for the Derivative of a Rational Function. Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 732-738. http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a7/