On the Kantorovich Problem for Nonlinear Images of the Wiener Measure
Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 682-688.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Kantorovich problem with the cost function given by the Cameron–Martin norm is considered for nonlinear images of the Wiener measure that are distributions of one-dimensional diffusion processes with nonconstant diffusion coefficients. It is shown that the problem can have trivial solutions only if the derivative of the diffusion coefficient differs from zero almost everywhere.
Keywords: Kantorovich problem, Wiener measure.
Mots-clés : distribution of a diffusion process, Cameron–Martin space
@article{MZM_2016_100_5_a3,
     author = {D. B. Bukin},
     title = {On the {Kantorovich} {Problem} for {Nonlinear} {Images} of the {Wiener} {Measure}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {682--688},
     publisher = {mathdoc},
     volume = {100},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a3/}
}
TY  - JOUR
AU  - D. B. Bukin
TI  - On the Kantorovich Problem for Nonlinear Images of the Wiener Measure
JO  - Matematičeskie zametki
PY  - 2016
SP  - 682
EP  - 688
VL  - 100
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a3/
LA  - ru
ID  - MZM_2016_100_5_a3
ER  - 
%0 Journal Article
%A D. B. Bukin
%T On the Kantorovich Problem for Nonlinear Images of the Wiener Measure
%J Matematičeskie zametki
%D 2016
%P 682-688
%V 100
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a3/
%G ru
%F MZM_2016_100_5_a3
D. B. Bukin. On the Kantorovich Problem for Nonlinear Images of the Wiener Measure. Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 682-688. http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a3/

[1] D. B. Bukin, “On the Monge and Kantorovich problems for distributions of diffusion processes”, Math. Notes, 96:5 (2014), 864–870 | DOI | MR | Zbl

[2] V. I. Bogachev, Gaussian Measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl

[3] V. I. Bogachev, Differentiable Measures and the Malliavin Calculus, Math. Surveys Monogr., 164, Amer. Math. Soc., Providence, RI, 2010 | MR | Zbl

[4] V. I. Bogachev, “Gaussian measures on infinite-dimensional spaces”, Real and Stochastic Analysis. Current Trends, World Sci. Publ., Hackensack, NJ, 2014, 1–83 | MR | Zbl

[5] D. Feyel, A. S. Üstünel, “Monge–Kantorovitch measure transportation and Monge–Ampére equation on Wiener space”, Probab. Theory Related Fields, 128:3 (2004), 347–385 | DOI | MR | Zbl

[6] D. Feyel, A. S. Üstünel, “Solution of the Monge–Ampére equation on Wiener space for general log-concave measures”, J. Funct. Anal., 232:1 (2006), 29–55 | DOI | MR | Zbl

[7] V. I. Bogachev, A. V. Kolesnikov, “Zadacha Monzha–Kantorovicha: dostizheniya, svyazi i perspektivy”, UMN, 67:5 (407) (2012), 3–110 | DOI | MR | Zbl

[8] V. I. Bogachev, A. V. Kolesnikov, “On the Monge–Ampére equation in infinite dimensions”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 8:4 (2005), 547–572 | DOI | MR | Zbl

[9] V. I. Bogachev, A. V. Kolesnikov, “Sobolev regularity for the Monge–Ampère equation in the Wiener space”, Kyoto J. Math., 53:4 (2013), 713–738 | DOI | MR | Zbl

[10] F. Cavalletti, “The Monge problem in Wiener space”, Calc. Var. Partial Differential Equations, 45:1-2 (2012), 101–124 | MR | Zbl

[11] S. Fang, J. Shao, K.-Th. Sturm, “Wasserstein space over the Wiener space”, Probab. Theory Related Fields, 146:3-4 (2010), 535–565 | DOI | MR | Zbl

[12] V. I. Bogachev, A. V. Kolesnikov, K. V. Medvedev, “Treugolnye preobrazovaniya mer”, Matem. sb., 196:3 (2005), 3–30 | DOI | MR | Zbl

[13] I. I. Gikhman, A. V. Skorokhod, Teoriya sluchainykh protsessov, T. 3, Nauka, M., 1975 | MR | Zbl

[14] Sh. Vatanabe, N. Ikeda, Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986 | MR | Zbl