On the Kantorovich Problem for Nonlinear Images of the Wiener Measure
Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 682-688

Voir la notice de l'article provenant de la source Math-Net.Ru

The Kantorovich problem with the cost function given by the Cameron–Martin norm is considered for nonlinear images of the Wiener measure that are distributions of one-dimensional diffusion processes with nonconstant diffusion coefficients. It is shown that the problem can have trivial solutions only if the derivative of the diffusion coefficient differs from zero almost everywhere.
Keywords: Kantorovich problem, Wiener measure.
Mots-clés : distribution of a diffusion process, Cameron–Martin space
@article{MZM_2016_100_5_a3,
     author = {D. B. Bukin},
     title = {On the {Kantorovich} {Problem} for {Nonlinear} {Images} of the {Wiener} {Measure}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {682--688},
     publisher = {mathdoc},
     volume = {100},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a3/}
}
TY  - JOUR
AU  - D. B. Bukin
TI  - On the Kantorovich Problem for Nonlinear Images of the Wiener Measure
JO  - Matematičeskie zametki
PY  - 2016
SP  - 682
EP  - 688
VL  - 100
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a3/
LA  - ru
ID  - MZM_2016_100_5_a3
ER  - 
%0 Journal Article
%A D. B. Bukin
%T On the Kantorovich Problem for Nonlinear Images of the Wiener Measure
%J Matematičeskie zametki
%D 2016
%P 682-688
%V 100
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a3/
%G ru
%F MZM_2016_100_5_a3
D. B. Bukin. On the Kantorovich Problem for Nonlinear Images of the Wiener Measure. Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 682-688. http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a3/