Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_100_5_a3, author = {D. B. Bukin}, title = {On the {Kantorovich} {Problem} for {Nonlinear} {Images} of the {Wiener} {Measure}}, journal = {Matemati\v{c}eskie zametki}, pages = {682--688}, publisher = {mathdoc}, volume = {100}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a3/} }
D. B. Bukin. On the Kantorovich Problem for Nonlinear Images of the Wiener Measure. Matematičeskie zametki, Tome 100 (2016) no. 5, pp. 682-688. http://geodesic.mathdoc.fr/item/MZM_2016_100_5_a3/
[1] D. B. Bukin, “On the Monge and Kantorovich problems for distributions of diffusion processes”, Math. Notes, 96:5 (2014), 864–870 | DOI | MR | Zbl
[2] V. I. Bogachev, Gaussian Measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl
[3] V. I. Bogachev, Differentiable Measures and the Malliavin Calculus, Math. Surveys Monogr., 164, Amer. Math. Soc., Providence, RI, 2010 | MR | Zbl
[4] V. I. Bogachev, “Gaussian measures on infinite-dimensional spaces”, Real and Stochastic Analysis. Current Trends, World Sci. Publ., Hackensack, NJ, 2014, 1–83 | MR | Zbl
[5] D. Feyel, A. S. Üstünel, “Monge–Kantorovitch measure transportation and Monge–Ampére equation on Wiener space”, Probab. Theory Related Fields, 128:3 (2004), 347–385 | DOI | MR | Zbl
[6] D. Feyel, A. S. Üstünel, “Solution of the Monge–Ampére equation on Wiener space for general log-concave measures”, J. Funct. Anal., 232:1 (2006), 29–55 | DOI | MR | Zbl
[7] V. I. Bogachev, A. V. Kolesnikov, “Zadacha Monzha–Kantorovicha: dostizheniya, svyazi i perspektivy”, UMN, 67:5 (407) (2012), 3–110 | DOI | MR | Zbl
[8] V. I. Bogachev, A. V. Kolesnikov, “On the Monge–Ampére equation in infinite dimensions”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 8:4 (2005), 547–572 | DOI | MR | Zbl
[9] V. I. Bogachev, A. V. Kolesnikov, “Sobolev regularity for the Monge–Ampère equation in the Wiener space”, Kyoto J. Math., 53:4 (2013), 713–738 | DOI | MR | Zbl
[10] F. Cavalletti, “The Monge problem in Wiener space”, Calc. Var. Partial Differential Equations, 45:1-2 (2012), 101–124 | MR | Zbl
[11] S. Fang, J. Shao, K.-Th. Sturm, “Wasserstein space over the Wiener space”, Probab. Theory Related Fields, 146:3-4 (2010), 535–565 | DOI | MR | Zbl
[12] V. I. Bogachev, A. V. Kolesnikov, K. V. Medvedev, “Treugolnye preobrazovaniya mer”, Matem. sb., 196:3 (2005), 3–30 | DOI | MR | Zbl
[13] I. I. Gikhman, A. V. Skorokhod, Teoriya sluchainykh protsessov, T. 3, Nauka, M., 1975 | MR | Zbl
[14] Sh. Vatanabe, N. Ikeda, Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986 | MR | Zbl