On Fourier Coefficients of Lacunary Systems
Matematičeskie zametki, Tome 100 (2016) no. 4, pp. 483-491

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the Zygmund space $L(\ln L)^{1/2}$ is the greatest one in the set of symmetric spaces $X$ for which any uniformly bounded orthonormal system of functions contains a sequence such that the corresponding space of Fourier coefficients $F(X)$ coincides with $\ell_2$. Similar results also hold for symmetric spaces located between the spaces $L(\ln L)^{1/2}$ and $L_1$.
Keywords: orthonormal system, symmetric space, real interpolation method.
Mots-clés : Fourier coefficients
@article{MZM_2016_100_4_a0,
     author = {S. V. Astashkin and E. M. Semenov},
     title = {On {Fourier} {Coefficients} of {Lacunary} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--491},
     publisher = {mathdoc},
     volume = {100},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a0/}
}
TY  - JOUR
AU  - S. V. Astashkin
AU  - E. M. Semenov
TI  - On Fourier Coefficients of Lacunary Systems
JO  - Matematičeskie zametki
PY  - 2016
SP  - 483
EP  - 491
VL  - 100
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a0/
LA  - ru
ID  - MZM_2016_100_4_a0
ER  - 
%0 Journal Article
%A S. V. Astashkin
%A E. M. Semenov
%T On Fourier Coefficients of Lacunary Systems
%J Matematičeskie zametki
%D 2016
%P 483-491
%V 100
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a0/
%G ru
%F MZM_2016_100_4_a0
S. V. Astashkin; E. M. Semenov. On Fourier Coefficients of Lacunary Systems. Matematičeskie zametki, Tome 100 (2016) no. 4, pp. 483-491. http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a0/