On Fourier Coefficients of Lacunary Systems
Matematičeskie zametki, Tome 100 (2016) no. 4, pp. 483-491
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the Zygmund space $L(\ln L)^{1/2}$ is the greatest one in the set of symmetric spaces $X$ for which any uniformly bounded orthonormal system of functions contains a sequence such that the corresponding space of Fourier coefficients $F(X)$ coincides with $\ell_2$. Similar results also hold for symmetric spaces located between the spaces $L(\ln L)^{1/2}$ and $L_1$.
Keywords:
orthonormal system, symmetric space, real interpolation method.
Mots-clés : Fourier coefficients
Mots-clés : Fourier coefficients
@article{MZM_2016_100_4_a0,
author = {S. V. Astashkin and E. M. Semenov},
title = {On {Fourier} {Coefficients} of {Lacunary} {Systems}},
journal = {Matemati\v{c}eskie zametki},
pages = {483--491},
publisher = {mathdoc},
volume = {100},
number = {4},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a0/}
}
S. V. Astashkin; E. M. Semenov. On Fourier Coefficients of Lacunary Systems. Matematičeskie zametki, Tome 100 (2016) no. 4, pp. 483-491. http://geodesic.mathdoc.fr/item/MZM_2016_100_4_a0/