Invariance of the Order and Type of a Sequence of Operators
Matematičeskie zametki, Tome 100 (2016) no. 3, pp. 399-409.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the invariance property of characteristics (the order and type) of an operator and of a sequence of operators with respect to a topological isomorphism is proved. These characteristics give precise upper and lower bounds for the expressions $\|A_n(x)\|_p$ and enable one to state and solve problems of operator theory in locally convex spaces in a general setting. Examples of such problems are given by the completeness problem for the set of values of a vector function in a locally convex space, the structure problem for a subspace invariant with respect to an operator $A$, the problem of applicability of an operator series to a locally convex space, the theory of holomorphic operator-valued functions, the theory of operator and differential-operator equations in nonnormed spaces, and so on. However, the immediate evaluation of characteristics of operators (and of sequences of operators) directly by definition is practically unrealizable in spaces with more complicated structure than that of countably normed spaces, due to the absence of an explicit form of seminorms or to their complicated structure. The approach that we use enables us to find characteristics of operators and sequences of operators using the passage to the dual space, by-passing the definition, and makes it possible to obtain bounds for the expressions $\|A_n(x)\|_p$ even if an explicit form of seminorms is unknown.
Keywords: locally convex space, order and type of an operator and of a sequence of operators, dual space.
@article{MZM_2016_100_3_a6,
     author = {S. N. Mishin},
     title = {Invariance of the {Order} and {Type} of a {Sequence} of {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {399--409},
     publisher = {mathdoc},
     volume = {100},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a6/}
}
TY  - JOUR
AU  - S. N. Mishin
TI  - Invariance of the Order and Type of a Sequence of Operators
JO  - Matematičeskie zametki
PY  - 2016
SP  - 399
EP  - 409
VL  - 100
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a6/
LA  - ru
ID  - MZM_2016_100_3_a6
ER  - 
%0 Journal Article
%A S. N. Mishin
%T Invariance of the Order and Type of a Sequence of Operators
%J Matematičeskie zametki
%D 2016
%P 399-409
%V 100
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a6/
%G ru
%F MZM_2016_100_3_a6
S. N. Mishin. Invariance of the Order and Type of a Sequence of Operators. Matematičeskie zametki, Tome 100 (2016) no. 3, pp. 399-409. http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a6/

[1] V. P. Gromov, “Popyadok i tip lineinogo operatora i pazlozhenie v pyad po sobstvennym funktsiyam”, DAN SSSR, 288:1 (1986), 27–31 | MR

[2] V. P. Gromov, “Popyadok i tip operatora i tselye vektopnoznachnye funktsii”, Uchenye zapiski OGU (lab. TFFA), 1999, no. 1, 6–23

[3] A. F. Leontev, Ryady eksponent, Hauka, M., 1976 | MR | Zbl

[4] A. F. Leontev, “Tselye funktsii. Ryady eksponent”, Nauka, M., 1983 | MR | Zbl

[5] S. N. Mishin, “O poryadke i tipe operatora”, DAN, 381:3 (2001), 309–312 | MR | Zbl

[6] S. N. Mishin, “Poryadok i tip operatora i posledovatelnosti operatorov, deistvuyuschikh v lokalno vypuklykh prostranstvakh”, Uchenye zapiski OGU (lab. TFFA), 2001, no. 3, 28–75

[7] L. V. Kantopovich, G. P. Akilov, Funktsionalnyi analiz v nopmipovannykh prostranstvakh, Fizmatgiz, M., 1959 | Zbl

[8] V. P. Gromov, “O polnote sistemy znachenii golomorfnoi vektor-funktsii v prostranstve Freshe”, Matem. zametki, 73:6 (2003), 827–840 | DOI | MR | Zbl

[9] O. D. Solomatin, “Obobschenie eksponentsialnoi funktsii i polnota sistem obobschennykh eksponent”, Uchenye zapiski OGU (lab. TFFA), 2001, no. 2, 90–95

[10] O. D. Solomatin, “O polnote sistemy obobschennykh eksponent v prostranstve Freshe”, Uchenye zapiski OGU (lab. TFFA), 2002, no. 3, 37–46

[11] A. Gelfond, “Sur les systèmes complets de fonctions analytiques”, Matem. sb., 4 (46):1 (1938), 149–156 | Zbl

[12] A. F. Leontev, Obobscheniya ryadov eksponent, Hauka, M., 1981 | MR | Zbl

[13] Yu. A. Kazmin, “O polnote sistem funktsii vida $\{f(z+\alpha_n)\}$ i $\{f^{(n)}(z)\}$”, UMN, 12:2 (74) (1957), 151–154 | MR | Zbl

[14] Yu. A. Kazmin, “O polnote odnoi sistemy analiticheskikh funktsii”, Vestn. Mosk. un-ta. Sep. 1. Matem., mekh., 1950, no. 5, 3–12

[15] O. D. Solomatin, “K voprosu ob invariantnykh podprostranstvakh lokalno-vypuklykh prostranstv”, Fundament. i prikl. matem., 3:3 (1997), 937–946 | MR | Zbl

[16] V. P. Gromov, “K vopposu ob invapiantnykh podppostpanstvakh prostranstv tselykh funktsii”, Izbpannye zadachi matematicheskogo analiza, Sb. tpudov. Vyp. 1, MOPI, M., 1980, 36–46

[17] S. N. Mishin, “Svyaz kharakteristik posledovatelnosti operatorov s bornologicheskoi skhodimostyu”, Vestn. RUDN. Ser. Matem., inform., fiz., 2010, no. 4, 26–34

[18] S. N. Mishin, “O primenimosti operatornogo ryada k lokalno vypuklomu prostranstvu”, Uchenye zapiski OGU, 2014, no. 6 (62), 22–26

[19] P. C. Sikkema, Differential Operators and Differential Equations of Infinite Order with Constant Coefficients: Researches in Connection with Integral Functions of Finite Order, P. Noordhoff N. V., Groningen–Djakarta, 1953

[20] P. van der Steen, On Differential Operators of Infinite Order, Doctoral dissertation, Technical University of Delft, Delft, 1968 | MR

[21] S. N. Mishin, “O kharakteristikakh rosta operatornoznachnykh funktsii”, Ufimsk. matem. zhurn., 5:1 (2013), 112–124 | MR

[22] S. N. Mishin, “Poryadok i tip posledovatelnosti operatorov i analiticheskie operatornoznachnye funktsii”, Uchenye zapiski OGU, 2014, no. 6 (62), 27–30

[23] H. A. Aksenov, Primenenie teorii poryadka i tipa operatora v lokalno vypuklykh prostranstvakh k issledovaniyu analiticheskikh zadach dlya differentsialno-operatornykh uravnenii, Dis. $\dots$ kand. fiz.-matem. nauk, Orel, 2011

[24] S. N. Mishin, “Ob odnom vide differentsialno-operatornykh uravnenii s peremennymi koeffitsientami”, Vestn. RUDN. Ser. Matem., inform., fiz., 2015, no. 1, 3–14

[25] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 1. Funktsionalnyi analiz, Mir, M., 1977 | MR

[26] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972 | MR | Zbl

[27] A. Pich, Yadernye lokalno vypuklye prostranstva, Mir, M., 1967 | MR | Zbl

[28] S. V. Panyushkin, “Obobschennoe preobrazovanie Fure i ego primeneniya”, Matem. zametki, 79:4 (2006), 581–596 | DOI | MR | Zbl

[29] I. F. Krasichkov, “Polnota v prostranstvakh kompleksnoznachnykh funktsii, opisyvaemykh povedeniem modulya”, Matem. sb., 68 (110):1 (1965), 26–57 | MR | Zbl

[30] V. P. Gromov, S. N. Mishin, S. V. Panyushkin, Operatory konechnogo poryadka i differentsialno-operatornye uravneniya, OGU, Orel, 2009