Maxwell's Equations, the Euler Index, and Morse Theory
Matematičeskie zametki, Tome 100 (2016) no. 3, pp. 331-343.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the singularities of the Fresnel surface for Maxwell's equation on an anisotrpic material can be accounted from purely topological considerations. The importance of these singularities is that they explain the phenomenon of conical refraction predicted by Hamilton. We show how to desingularise the Fresnel surface, which will allow us to use Morse theory to find lower bounds for the number of critical wave velocities inside the material under consideration. Finally, we propose a program to generalise the results obtained to the general case of hyperbolic differential operators on differentiable bundles.
Keywords: conical refraction, tensor, vector bundle, singularities.
Mots-clés : Fresnel surface, section
@article{MZM_2016_100_3_a1,
     author = {C. Valero},
     title = {Maxwell's {Equations,} the {Euler} {Index,} and {Morse} {Theory}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {331--343},
     publisher = {mathdoc},
     volume = {100},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a1/}
}
TY  - JOUR
AU  - C. Valero
TI  - Maxwell's Equations, the Euler Index, and Morse Theory
JO  - Matematičeskie zametki
PY  - 2016
SP  - 331
EP  - 343
VL  - 100
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a1/
LA  - ru
ID  - MZM_2016_100_3_a1
ER  - 
%0 Journal Article
%A C. Valero
%T Maxwell's Equations, the Euler Index, and Morse Theory
%J Matematičeskie zametki
%D 2016
%P 331-343
%V 100
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a1/
%G ru
%F MZM_2016_100_3_a1
C. Valero. Maxwell's Equations, the Euler Index, and Morse Theory. Matematičeskie zametki, Tome 100 (2016) no. 3, pp. 331-343. http://geodesic.mathdoc.fr/item/MZM_2016_100_3_a1/

[1] M. Born, E. Wolf, Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Pergamon Press, New York, 1959 | MR | Zbl

[2] J. W. Milnor, Morse Theory, Ann. of Math. Stud., 51, Princeton Univ. Press, Princeton, NJ, 1963 | Zbl

[3] C. Valero, “Morse theory for the eigenvalue functions of symmetric tensors”, J. Topol. Anal., 1:4 (2009), 417–429 | DOI | MR | Zbl

[4] V. Guillemin, S. Sternberg, Geometric Asymptotics, Math. Surveys Monogr., 14, Amer. Math. Soc., Providence, RI, 1977 | DOI | MR | Zbl

[5] L. Hörmander, “Hyperbolic systems with double characteristics”, Comm. Pure Appl. Math., 46:2 (1993), 261–301 | DOI | MR | Zbl

[6] F. John, “Algebraic conditions for hyperbolicity of systems of partial differential operators”, Comm. Pure Appl. Math., 31 (1978), 89–106 | DOI | MR | Zbl

[7] B. A. Khesin, “Singularities of light hypersurfaces and structure of hyperbolicity sets for systems of partial differential equations”, Theory of Singularities and its Applications, Adv. Soviet Math., 1, Amer. Math. Soc., Providence, RI, 1990, 105–118 | MR | Zbl

[8] P. D. Lax, “The multiplicity of eigenvalues”, Bull. Amer. Math. Soc., 6 (1982), 213–214 | DOI | MR | Zbl

[9] W. Nuij, “A note on hyperbolic polynomials”, Math. Scand., 23 (1968), 69–72 | MR | Zbl

[10] P. J. Braam, J. J. Duistermaat, “Normal forms of real symmetric systems with multiplicity”, Indag. Math. (N.S.), 4:4 (1993), 407–421 | DOI | MR | Zbl

[11] V. I. Arnold, Singularities of Caustics and Wave Fronts, Math. Appl. (Soviet Ser.), 62, Kluwer Acad. Publ., Dordrecht, 1990 | MR | Zbl