On the Dirichlet-Type Problem for Elliptic Systems Degenerate at a Line
Matematičeskie zametki, Tome 100 (2016) no. 2, pp. 270-278.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the Dirichlet-type problem for the system of elliptic equations of second order with the degeneracy at a line crossing the domain is considered. The Dirichlet-type problem with additionally given asymptotics of the solution at this line is discussed. The uniqueness and the existence of the solution of this problem in the class of Hölder functions is proved.
Keywords: elliptic systems, degeneracy, Dirichlet problem, asymptotic of solutions.
@article{MZM_2016_100_2_a6,
     author = {S. Rutkauskas},
     title = {On the {Dirichlet-Type} {Problem} for {Elliptic} {Systems} {Degenerate} at a {Line}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {270--278},
     publisher = {mathdoc},
     volume = {100},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a6/}
}
TY  - JOUR
AU  - S. Rutkauskas
TI  - On the Dirichlet-Type Problem for Elliptic Systems Degenerate at a Line
JO  - Matematičeskie zametki
PY  - 2016
SP  - 270
EP  - 278
VL  - 100
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a6/
LA  - ru
ID  - MZM_2016_100_2_a6
ER  - 
%0 Journal Article
%A S. Rutkauskas
%T On the Dirichlet-Type Problem for Elliptic Systems Degenerate at a Line
%J Matematičeskie zametki
%D 2016
%P 270-278
%V 100
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a6/
%G ru
%F MZM_2016_100_2_a6
S. Rutkauskas. On the Dirichlet-Type Problem for Elliptic Systems Degenerate at a Line. Matematičeskie zametki, Tome 100 (2016) no. 2, pp. 270-278. http://geodesic.mathdoc.fr/item/MZM_2016_100_2_a6/

[1] S. Rutkauskas, “O pervoi kraevoi zadache dlya sistemy ellipticheskikh uravnenii s vyrozhdeniem na pryamoi”, Tr. in-ta matem. NAN Belarusi, 10 (2001), 126–129

[2] S. Rutkauskas, “Dirichlet type problem for the system of elliptic equations, which order degenerate at a line”, Nonlinear Anal. Model. Control, 19:3 (2014), 476–487 | DOI | MR | Zbl

[3] A. I. Yanushauskas, “K zadache Dirikhle dlya vyrozhdayuschikhsya ellipticheskikh uravnenii”, Differents. uravneniya, 7:1 (1971), 166–174 | Zbl

[4] S. Rutkauskas, “Zadachi Dirikhle s asimptoticheskimi usloviyami dlya vyrozhdayuscheisya v tochke ellipticheskoi sistemy. I”, Differents. uravneniya, 38:3 (2002), 385–392 | MR | Zbl

[5] S. Rutkauskas, “Zadachi Dirikhle s asimptoticheskimi usloviyami dlya vyrozhdayuscheisya v tochke ellipticheskoi sistemy. II”, Differents. uravneniya, 38:5 (2002), 681–686 | MR | Zbl

[6] S. Rutkauskas, “On the influence of the lowest terms on Dirichlet type problems for elliptic systems degenerate at a point”, Lithuanian Math. J., 41:3 (2001), 282–291 | DOI | MR | Zbl

[7] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR | Zbl

[8] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II”, Comm. Pure Appl. Math., 17 (1964), 35–92 | DOI | MR | Zbl

[9] V. A. Solonnikov, “Ob obschikh kraevykh zadachakh dlya sistem, ellipticheskikh v smysle A. Daglisa–L. Nirenberga. I”, Izv. AN SSSR. Ser. matem., 28:3 (1964), 665–706 | MR | Zbl

[10] V. A. Solonnikov, “Ob obschikh kraevykh zadachakh dlya sistem, ellipticheskikh v smysle A. Daglisa–L. Nirenberga. II”, Kraevye zadachi matematicheskoi fiziki. 4, Tr. MIAN SSSR, 92, 1966, 233–297 | MR | Zbl

[11] E. Hopf, “Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus”, Sitzungsberichte Akad. Berlin, 19 (1927), 147–152 | Zbl