Long Time Asymptotics of Periodic Generalized Entropy Solutions of Scalar Conservation Laws
Matematičeskie zametki, Tome 100 (2016) no. 1, pp. 133-143
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the periodic generalized entropy solution of a one-dimensional conservation law converges in time to a traveling wave. In this case, the flow function is linear on the minimal interval containing the essential image of the traveling wave profile and the wave velocity coincides with the angular coefficient of the flow function bounded on this interval.
Keywords:
conservation law, generalized entropy solution, stabilization property, traveling wave, measure-valued function, compensated compactness.
@article{MZM_2016_100_1_a9,
author = {E. Yu. Panov},
title = {Long {Time} {Asymptotics} of {Periodic} {Generalized} {Entropy} {Solutions} of {Scalar} {Conservation} {Laws}},
journal = {Matemati\v{c}eskie zametki},
pages = {133--143},
publisher = {mathdoc},
volume = {100},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a9/}
}
TY - JOUR AU - E. Yu. Panov TI - Long Time Asymptotics of Periodic Generalized Entropy Solutions of Scalar Conservation Laws JO - Matematičeskie zametki PY - 2016 SP - 133 EP - 143 VL - 100 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a9/ LA - ru ID - MZM_2016_100_1_a9 ER -
E. Yu. Panov. Long Time Asymptotics of Periodic Generalized Entropy Solutions of Scalar Conservation Laws. Matematičeskie zametki, Tome 100 (2016) no. 1, pp. 133-143. http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a9/