Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2016_100_1_a9, author = {E. Yu. Panov}, title = {Long {Time} {Asymptotics} of {Periodic} {Generalized} {Entropy} {Solutions} of {Scalar} {Conservation} {Laws}}, journal = {Matemati\v{c}eskie zametki}, pages = {133--143}, publisher = {mathdoc}, volume = {100}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a9/} }
TY - JOUR AU - E. Yu. Panov TI - Long Time Asymptotics of Periodic Generalized Entropy Solutions of Scalar Conservation Laws JO - Matematičeskie zametki PY - 2016 SP - 133 EP - 143 VL - 100 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a9/ LA - ru ID - MZM_2016_100_1_a9 ER -
E. Yu. Panov. Long Time Asymptotics of Periodic Generalized Entropy Solutions of Scalar Conservation Laws. Matematičeskie zametki, Tome 100 (2016) no. 1, pp. 133-143. http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a9/
[1] S. N. Kruzhkov, “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sb., 81 (123):2 (1970), 228–255 | MR | Zbl
[2] E. Yu. Panov, “Meroznachnye resheniya zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka s neogranichennoi oblastyu zavisimosti ot nachalnykh dannykh”, Dinamika sploshnoi sredy, 88 (1988), 102–108 | Zbl
[3] S. N. Kruzhkov, E. Yu. Panov, “Konservativnye kvazilineinye zakony pervogo poryadka s beskonechnoi oblastyu zavisimosti ot nachalnykh dannykh”, Dokl. AN SSSR, 314:1 (1990), 79–84 | MR | Zbl
[4] S. N. Kruzhkov, E. Yu. Panov, “Osgood's type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order”, Ann. Univ. Ferrara Sez. VII (N.S.), 40 (1994), 31–54 | MR | Zbl
[5] E. Yu. Panov, “O edinstvennosti resheniya zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka s odnoi dopustimoi strogo vypukloi entropiei”, Matem. zametki, 55:5 (1994), 116–129 | MR | Zbl
[6] E. Yu. Panov, “K teorii obobschennykh entropiinykh sub- i super-reshenii zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Differents. uravneniya, 37:2 (2001), 252–259 | MR | Zbl
[7] E. Yu. Panov, “On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws”, Netw. Heterog. Media, 11:2 (2016), 349–367 | MR
[8] L. Tartar, “Compensated compactness and applications to partial differential equations.”, Nonlinear Analysis and Mechanics, Heriot–Watt Symposium, Vol. IV, Res. Notes in Math., 39, Pitman, Boston, MA, 1979, 136–212 | MR | Zbl
[9] G. Q. Chen, Y. G. Lu, “The study on application way of the compensated compactness theory”, Chinese Sci. Bull., 34:1 (1989), 15–19 | MR | Zbl
[10] C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Grundlehren Math. Wiss., 325, Springer-Verlag, Berlin, 2010 | MR | Zbl
[11] E. Panov, “On weak completeness of the set of entropy solutions to a scalar conservation law”, SIAM J. Math. Anal., 41:1 (2009), 26–36 | DOI | MR | Zbl
[12] P. V. Lysukho, E. Yu. Panov, “Renormalizovannye entropiinye resheniya zadachi Koshi dlya kvazilineinykh zakonov sokhraneniya pervogo poryadka v klasse periodicheskikh funktsii”, Probl. matem. anal., 59 (2011), 25–42
[13] G.-Q. Chen, H. Frid, “Decay of entropy solutions of nonlinear conservation laws”, Arch. Ration. Mech. Anal., 146:2 (1999), 95–127 | DOI | MR | Zbl
[14] C. M. Dafermos, “Long time behavior of periodic solutions to scalar conservation laws in several space dimensions”, SIAM J. Math. Anal., 45:4 (2013), 2064–2070 | DOI | MR | Zbl
[15] R. J. DiPerna, “Measure-valued solutions to conservation laws”, Arch. Ration. Mech. Anal., 88:3 (1985), 223–270 | DOI | MR | Zbl
[16] E. Panov, “On weak completeness of the set of entropy solutions to a degenerate nonlinear parabolic equation”, SIAM J. Math. Anal., 44:1 (2012), 513–535 | DOI | MR | Zbl
[17] F. Murat, “L'injection du cône positif de $H^{-1}$ dans $W^{-1,q}$ est compacte pour tout $q2$”, J. Math. Pures Appl. (9), 60:3 (1981), 309–322 | MR | Zbl
[18] F. Murat, “Compacité par compensation”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5:3 (1978), 489–507 | MR | Zbl
[19] E. Yu. Panov, “Existence of strong traces for generalized solutions of multidimensional scalar conservation laws”, J. Hyperbolic Differ. Equ., 2:4 (2005), 885–908 | DOI | MR | Zbl