Asymptotics of the Fourier Sine Transform of a~Function of Bounded Variation
Matematičeskie zametki, Tome 100 (2016) no. 1, pp. 109-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the asymptotic formula for the Fourier sine transform of a function of bounded variation, we find a new proof entirely within the framework of the theory of Hardy spaces, primarily with the use of the Hardy inequality. We show that, for a function of bounded variation whose derivative lies in the Hardy space, every aspect of the behavior of its Fourier transform can somehow be expressed in terms of the Hilbert transform of the derivative.
Keywords: function of bounded variation, locally absolutely continuous function, Hardy space, Hardy inequality, M. Riesz theorem.
Mots-clés : Fourier transform, Hilbert transform
@article{MZM_2016_100_1_a7,
     author = {E. R. Liflyand},
     title = {Asymptotics of the {Fourier} {Sine} {Transform} of {a~Function} of {Bounded} {Variation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {109--117},
     publisher = {mathdoc},
     volume = {100},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a7/}
}
TY  - JOUR
AU  - E. R. Liflyand
TI  - Asymptotics of the Fourier Sine Transform of a~Function of Bounded Variation
JO  - Matematičeskie zametki
PY  - 2016
SP  - 109
EP  - 117
VL  - 100
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a7/
LA  - ru
ID  - MZM_2016_100_1_a7
ER  - 
%0 Journal Article
%A E. R. Liflyand
%T Asymptotics of the Fourier Sine Transform of a~Function of Bounded Variation
%J Matematičeskie zametki
%D 2016
%P 109-117
%V 100
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a7/
%G ru
%F MZM_2016_100_1_a7
E. R. Liflyand. Asymptotics of the Fourier Sine Transform of a~Function of Bounded Variation. Matematičeskie zametki, Tome 100 (2016) no. 1, pp. 109-117. http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a7/

[1] S. Fridli, “Hardy Spaces Generated by an Integrability Condition”, J. Approx. Theory, 113:1 (2001), 91–109 | DOI | MR | Zbl

[2] E. Liflyand, S. Tikhonov, “The Fourier transforms of general monotone functions”, Analysis and Mathematical Physics, Trends in Math., Birkhäuser, Basel, 2009, 377–395 | MR

[3] A. M. Kopezhanova, E. D. Nursultanov, L.-E. Persson, “O neravenstvakh dlya preobrazovaniya Fure funktsii iz prostranstv Lorentsa”, Matem. zametki, 90:5 (2011), 785–788 | DOI | MR | Zbl

[4] E. Liflyand, “Fourier transform versus Hilbert transform”, J. Math. Sci., 187 (2012), 49–56 | DOI | MR | Zbl

[5] E. Liflyand, “Interaction between the Fourier transform and the Hilbert transform”, Acta Comment. Univ. Tartu. Math., 18:1 (2014), 19–32 | MR | Zbl

[6] A. Iosevich, E. Liflyand, Decay of the Fourier Transform. Analytic and Geometric Aspects, Birkhäuser, Basel, 2014 | MR

[7] E. Liflyand, “Fourier transforms of functions from certain classes”, Anal. Math., 19:2 (1993), 151–168 | DOI | Zbl

[8] H. Kober, “A note on Hilbert's operator”, Bull. Amer. Math. Soc., 48:1 (1942), 421–427 | DOI | MR

[9] E. Liflyand, S. Tikhonov, “Weighted Paley–Wiener theorem on the Hilbert transform”, C. R. Acad. Sci. Paris, 348:23-24 (2010), 1253–1258 | DOI | MR | Zbl

[10] S. A. Telyakovskii, “Usloviya integriruemosti trigonometricheskikh ryadov i ikh prilozhenie k izucheniyu lineinykh metodov summirovaniya ryadov Fure”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1209–1236 | MR | Zbl

[11] R. M. Trigub, “Ob integralnykh normakh polinomov”, Matem. sb., 101 (143):3 (11) (1976), 315–333 | MR | Zbl

[12] G. E. Shilov, “O koeffitsientakh Fure odnogo klassa nepreryvnykh funktsii”, Dokl. AN SSSR, 35 (1942), 3–7 | Zbl

[13] R. M. Trigub, E. S. Belinsky, Fourier Analysis and Approximation of Functions, Springer Netherlands, 2004 | DOI

[14] J. Garcia-Cuerva, J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud., 116, North-Holland Publ., Amsterdam, 1985 | MR

[15] F. W. King, Hilbert Transforms, Vol. 1, 124, Encyclopedia Math. Appl., Cambridge, 2009 | MR | Zbl

[16] D. Borwein, “Linear functionals connected with strong Cesáro summability”, J. London Math. Soc., 40 (1965), 628–634 | DOI | MR | Zbl

[17] G. A. Fomin, “Ob odnom klasse trigonometricheskikh ryadov”, Matem. zametki, 23:2 (1978), 213–222 | MR | Zbl

[18] D. V. Giang, F. Móricz, “On the $L^1$ theory of Fourier transforms and multipliers”, Acta Sci. Math. (Szeged), 61:1-4 (1995), 293–304 | MR | Zbl

[19] C. S. Herz, “Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms”, J. Math. Mech., 18 (1968), 283–323 | MR | Zbl

[20] T. M. Flett, “Some elementary inequalities for integrals with applications to Fourier transforms”, Proc. London Math. Soc. (3), 29 (1974), 538–556 | DOI | MR | Zbl

[21] A. Lerner, E. Liflyand, “Interpolation properties of a scale of spaces”, Collect. Math., 54:2 (2003), 153–161 | MR | Zbl

[22] G. Alexits, Convergence Problems of Orthogonal Series, Int. Ser. Monogr. Pure Appl. Math., 20, Pergamon Press, New York, 1961 | MR | Zbl

[23] E. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR

[24] A. Beurling, “On the spectral synthesis of bounded functions”, Acta Math., 81 (1949), 225–238 | DOI | MR | Zbl

[25] E. S. Belinsky, E. R. Liflyand, R. M. Trigub, “The Banach algebra $A^*$ and its properties”, J. Fourier Anal. Appl., 3:2 (1997), 103–129 | DOI | MR

[26] D. V. Giang, F. Móricz, “Lebesgue integrability of double Fourier transforms”, Acta Sci. Math. (Szeged), 58:1-4 (1993), 299–328 | MR | Zbl

[27] E. Liflyand, “Multiple Fourier transforms and trigonometric series in line with Hardy's variation”, Contemp. Math., 659 (2016), 135–155 | DOI