Almost Everywhere Summability of Fourier Series with Indication of the Set of Convergence
Matematičeskie zametki, Tome 100 (2016) no. 1, pp. 163-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the following problem is studied. For what multipliers $\{\lambda_{k,n}\}$ do the linear means of the Fourier series of functions $f\in L_1[-\pi,\pi]$, $$ \sum_{k=-\infty}^\infty \lambda_{k,n}\widehat{f}_k e^{ikx}, \qquad \text{where $\widehat{f}_k$ is the $k$th Fourier coefficient}, $$ converge as $n\to \infty$ at all points at which the derivative of the function $\int_0^x f$ exists? In the case $\lambda_{k,n}=(1-|k|/(n+1))_+$, a criterion of the convergence of the $(C,1)$-means and, in the general case $\lambda_{k,n}=\phi(k/(n+1))$, a sufficient condition of the convergence at all such points (i.e., almost everywhere) are obtained. In the general case, the answer is given in terms of whether $\phi(x)$ and $x\phi'(x)$ belong to the Wiener algebra of absolutely convergent Fourier integrals. New examples are given.
Keywords: Fourier series, $d$-point, Wiener–Banach algebra, Szidon's inequality, Hardy–Littlewood inequality.
Mots-clés : Lebesgue point
@article{MZM_2016_100_1_a12,
     author = {R. M. Trigub},
     title = {Almost {Everywhere} {Summability} of {Fourier} {Series} with {Indication} of the {Set} of {Convergence}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--179},
     publisher = {mathdoc},
     volume = {100},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a12/}
}
TY  - JOUR
AU  - R. M. Trigub
TI  - Almost Everywhere Summability of Fourier Series with Indication of the Set of Convergence
JO  - Matematičeskie zametki
PY  - 2016
SP  - 163
EP  - 179
VL  - 100
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a12/
LA  - ru
ID  - MZM_2016_100_1_a12
ER  - 
%0 Journal Article
%A R. M. Trigub
%T Almost Everywhere Summability of Fourier Series with Indication of the Set of Convergence
%J Matematičeskie zametki
%D 2016
%P 163-179
%V 100
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a12/
%G ru
%F MZM_2016_100_1_a12
R. M. Trigub. Almost Everywhere Summability of Fourier Series with Indication of the Set of Convergence. Matematičeskie zametki, Tome 100 (2016) no. 1, pp. 163-179. http://geodesic.mathdoc.fr/item/MZM_2016_100_1_a12/

[1] A. Kolmogoroff, “Une série de Fourier–Lebesgue divergente partout”, C. R. Acad. Sci. Paris, 183 (1926), 1327–1329 | Zbl

[2] R. A. Hunt, “On the convergence of Fourier series”, Orthogonal Expansions and their Continuous Analogues, Southern Illinois Univ. Press, Carbondale, IL, 1968, 235–255 | MR | Zbl

[3] S. V. Konyagin, “O raskhodimosti vsyudu trigonometricheskikh ryadov Fure”, Matem. sb., 191:1 (2000), 103–126 | DOI | MR | Zbl

[4] N. Yu. Antonov, “Convergence of Fourier series”, East J. Approx., 2:2 (1996), 187–196 | MR | Zbl

[5] A. Zigmund, Trigonometricheskie ryady, T. 1, 2, Mir, M., 1965 | MR | Zbl | Zbl

[6] G. H. Hardy, W. W. Rogosinski, Fourier Series, Cambridge Tracts in Math. Math. Phys., 38, Cambridge Univ. Press, Cambridge, 1950 | MR

[7] R. M. Trigub, E. S. Belinsky, Fourier Analysis and Approximation of Functions, Springer Netherlands, 2004 | DOI

[8] N. K. Bari, A Treatise in Trigonometric series, Vols. I, II, Macmillan, New York, 1964 | MR

[9] D. L. Faddeev, “O predstavlenii summiruemykh funktsii singulyarnymi integralami v tochkakh Lebesgue'a”, Matem. sb., 1 (43):3 (1936), 351–368 | Zbl

[10] G. H. Hardy, Divergent Series, Clarendon Press, Oxford, 1949 | MR | Zbl

[11] H. Lebesgue, “Recherches sur la convergence des séries de Fourier”, Math. Ann., 61:2 (1905), 251–280 | DOI | MR | Zbl

[12] R. M. Trigub, “Summiruemost trigonometricheskikh ryadov Fure v $d$-tochkakh i obobschenie metoda Abelya–Puassona”, Izv. RAN. Ser. matem., 79:4 (2015), 205–224 | DOI | MR | Zbl

[13] E. Liflyand, S. Samko, R. Trigub, “The Wiener algebra of absolutely convergent Fourier integrals: an overview”, Anal. Math. Phys., 2:1 (2012), 1–68 | DOI | MR | Zbl

[14] R. M. Trigub, “Otsenka snizu $L_1$-normy ryada Fure stepennogo tipa”, Matem. zametki, 73:6 (2003), 951–953 | DOI | MR | Zbl