Torsion-Free Modules with $\mathrm{UA}$-Rings of Endomorphisms
Matematičeskie zametki, Tome 98 (2015) no. 6, pp. 898-906
Voir la notice de l'article provenant de la source Math-Net.Ru
An associative ring $R$ is called a unique addition ring ($\mathrm{UA}$-ring) if its multiplicative semigroup $(R,\,\cdot\,)$ can be equipped with a unique binary operation $+$ transforming the triple $(R,\,\cdot\,,+)$ to a ring. An $R$-module $A$ is said to be an $\mathrm{End}$-$\mathrm{UA}$-module if the endomorphism ring $\mathrm{End}_R(A)$ of $A$ is a $\mathrm{UA}$-ring. In the paper, the torsion-free $\mathrm{End}$-$\mathrm{UA}$-modules over commutative Dedekind domains are studied. In some classes of Abelian torsion-free groups, the Abelian groups having $\mathrm{UA}$-endomorphism rings are found.
Mots-clés :
Abelian torsion-free group, $\mathrm{End}$-$\mathrm{UA}$-module
Keywords: $\mathrm{UA}$-ring, $\mathrm{UA}$-endomorphism ring.
Keywords: $\mathrm{UA}$-ring, $\mathrm{UA}$-endomorphism ring.
@article{MZM_2015_98_6_a9,
author = {O. V. Ljubimtsev and D. S. Chistyakov},
title = {Torsion-Free {Modules} with $\mathrm{UA}${-Rings} of {Endomorphisms}},
journal = {Matemati\v{c}eskie zametki},
pages = {898--906},
publisher = {mathdoc},
volume = {98},
number = {6},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a9/}
}
O. V. Ljubimtsev; D. S. Chistyakov. Torsion-Free Modules with $\mathrm{UA}$-Rings of Endomorphisms. Matematičeskie zametki, Tome 98 (2015) no. 6, pp. 898-906. http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a9/