Torsion-Free Modules with $\mathrm{UA}$-Rings of Endomorphisms
Matematičeskie zametki, Tome 98 (2015) no. 6, pp. 898-906.

Voir la notice de l'article provenant de la source Math-Net.Ru

An associative ring $R$ is called a unique addition ring ($\mathrm{UA}$-ring) if its multiplicative semigroup $(R,\,\cdot\,)$ can be equipped with a unique binary operation $+$ transforming the triple $(R,\,\cdot\,,+)$ to a ring. An $R$-module $A$ is said to be an $\mathrm{End}$-$\mathrm{UA}$-module if the endomorphism ring $\mathrm{End}_R(A)$ of $A$ is a $\mathrm{UA}$-ring. In the paper, the torsion-free $\mathrm{End}$-$\mathrm{UA}$-modules over commutative Dedekind domains are studied. In some classes of Abelian torsion-free groups, the Abelian groups having $\mathrm{UA}$-endomorphism rings are found.
Mots-clés : Abelian torsion-free group, $\mathrm{End}$-$\mathrm{UA}$-module
Keywords: $\mathrm{UA}$-ring, $\mathrm{UA}$-endomorphism ring.
@article{MZM_2015_98_6_a9,
     author = {O. V. Ljubimtsev and D. S. Chistyakov},
     title = {Torsion-Free {Modules} with $\mathrm{UA}${-Rings} of {Endomorphisms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {898--906},
     publisher = {mathdoc},
     volume = {98},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a9/}
}
TY  - JOUR
AU  - O. V. Ljubimtsev
AU  - D. S. Chistyakov
TI  - Torsion-Free Modules with $\mathrm{UA}$-Rings of Endomorphisms
JO  - Matematičeskie zametki
PY  - 2015
SP  - 898
EP  - 906
VL  - 98
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a9/
LA  - ru
ID  - MZM_2015_98_6_a9
ER  - 
%0 Journal Article
%A O. V. Ljubimtsev
%A D. S. Chistyakov
%T Torsion-Free Modules with $\mathrm{UA}$-Rings of Endomorphisms
%J Matematičeskie zametki
%D 2015
%P 898-906
%V 98
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a9/
%G ru
%F MZM_2015_98_6_a9
O. V. Ljubimtsev; D. S. Chistyakov. Torsion-Free Modules with $\mathrm{UA}$-Rings of Endomorphisms. Matematičeskie zametki, Tome 98 (2015) no. 6, pp. 898-906. http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a9/

[1] A. V. Mikhalev, “Multiplikativnaya klassifikatsiya assotsiativnykh kolets”, Matem. sb., 135:2 (1988), 210–224 | MR | Zbl

[2] W. Stephenson, “Unique addition rings”, Canad. J. Math., 21 (1969), 1455–1461 | DOI | MR | Zbl

[3] O. V. Lyubimtsev, “Separabelnye abelevy gruppy bez krucheniya s $UA$-koltsami endomorfizmov”, Fundament. i prikl. matem., 4:4 (1998), 1419–1422 | MR | Zbl

[4] O. V. Lyubimtsev, “Periodicheskie abelevy gruppy s $UA$-koltsami endomorfizmov”, Matem. zametki, 70:5 (2001), 736–741 | DOI | MR | Zbl

[5] O. V. Lyubimtsev, D. S. Chistyakov, “Ob abelevykh gruppakh bez krucheniya s $UA$-koltsom endomorfizmov”, Vestn. Tomsk. gos. un-ta, 2011, no. 2 (14), 55–58

[6] L. Fuchs, L. Salce, Modules Over Non-Noetherian Domains, Math. Surveys Monogr., 84, Amer. Math. Soc., Providence, RI,, 2001 | MR | Zbl

[7] N. Burbaki, Kommutativnaya algebra, Elementy matematiki, M., Mir, 1971 | MR | Zbl

[8] N. I. Dubrovin, “Nekommutativnye koltsa normirovaniya”, Tr. MMO, 45, Izd-vo Mosk. un-a, M., 1982, 265–280 | MR | Zbl

[9] T. G. Faticoni, Direct Sum Decompositions of Torsion-Free Finite Rank Groups, Pure Appl. Math. (Boca Raton), 285, Chapman Hall, Boca Raton, FL, 2007 | MR | Zbl

[10] J. D. Reid, “On the ring of quasi-endomorphisms of a torsion-free group”, Topics in Abelian Groups, Scott, Foresman and Co., Chicago, IL, 1963, 51–68 | MR

[11] R. B. Warfield Jr., “Homomorphisms and duality for torsion-free groups”, Math. Z., 107:3 (1968), 189–200 | DOI | MR | Zbl

[12] A. V. Cherednikova, “Koltsa kvaziendomorfizmov kvazirazlozhimykh abelevykh grupp bez krucheniya ranga 3”, Abelevy gruppy i moduli, 13-14 (1996), 224–236 | Zbl