Exchanged Toric Tilings, Rauzy Substitution, and Bounded Remainder Sets
Matematičeskie zametki, Tome 98 (2015) no. 6, pp. 878-897.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the two-dimensional problem of the distribution of the fractional parts of a linear function. A new class of tilings of the two-dimensional torus into bounded remainder sets with an effective estimate of the remainder is introduced. It is shown that examples of the tilings under consideration can be obtained by using the geometric version of the Rauzy substitution.
Keywords: exchanged toric tiling, Rauzy substitution, bounded remainder set, distribution of the fractional parts of a linear function, Rauzy tiling
Mots-clés : fractal set, Rauzy fractal, tribonacci sequence.
@article{MZM_2015_98_6_a8,
     author = {D. V. Kuznetsova and A. V. Shutov},
     title = {Exchanged {Toric} {Tilings,} {Rauzy} {Substitution,} and {Bounded} {Remainder} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {878--897},
     publisher = {mathdoc},
     volume = {98},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a8/}
}
TY  - JOUR
AU  - D. V. Kuznetsova
AU  - A. V. Shutov
TI  - Exchanged Toric Tilings, Rauzy Substitution, and Bounded Remainder Sets
JO  - Matematičeskie zametki
PY  - 2015
SP  - 878
EP  - 897
VL  - 98
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a8/
LA  - ru
ID  - MZM_2015_98_6_a8
ER  - 
%0 Journal Article
%A D. V. Kuznetsova
%A A. V. Shutov
%T Exchanged Toric Tilings, Rauzy Substitution, and Bounded Remainder Sets
%J Matematičeskie zametki
%D 2015
%P 878-897
%V 98
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a8/
%G ru
%F MZM_2015_98_6_a8
D. V. Kuznetsova; A. V. Shutov. Exchanged Toric Tilings, Rauzy Substitution, and Bounded Remainder Sets. Matematičeskie zametki, Tome 98 (2015) no. 6, pp. 878-897. http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a8/

[1] H. Weyl, “Über die Gleichverteilung von Zahlen mod. Eins”, Math. Ann., 77:3 (1916), 313–352 | DOI | MR | Zbl

[2] E. Hecke, “Über analytische Funktionen und die Verteilung von Zahlen mod. Eins”, Hamb. Abh., 1 (1921), 54–76 | Zbl

[3] H. Kesten, “On a conjecture of Erdös and Szüsz related to uniform distribution mod $1$”, Acta Arith., 12 (1966), 193–212 | MR | Zbl

[4] I. Oren, “Admissible functions with multiple discontinuities”, Israel J. Math., 42:4 (1982), 353–360 | DOI | MR | Zbl

[5] A. V. Shutov, “Problema Gekke–Kestena dlya neskolkikh intervalov”, Chebyshevskii sb., 12:1 (2011), 172–177 | MR | Zbl

[6] P. Liardet, “Regularities of distribution”, Compositio Math., 61:3 (1987), 267–293 | MR | Zbl

[7] G. Rauzy, “Nombres algèbriques et substitutions”, 110, no. 2, Bull. Soc. Math. France, 1982, 147–178 | MR | Zbl

[8] R. Szüsz, “Über die Verteilung der Vielfachen einer Komplexen Zahl nach dem Modul des Einheitsquadrats”, Acta Math. Acad. Sci. Hungar., 5 (1954), 35–39 | DOI | MR | Zbl

[9] A. A. Abrosimova, “Mnozhestva ogranichennogo ostatka na dvumernom tore”, Chebyshevskii sb., 12:4 (2011), 15–23 | MR | Zbl

[10] V. G. Zhuravlev, “Mnogogranniki ogranichennogo ostatka”, Matematika i informatika, 1, K 75-letiyu so dnya rozhdeniya Anatoliya Alekseevicha Karatsuby, Sovr. probl. matem., 16, MIAN, M., 2012, 82–102 | DOI | Zbl

[11] V. G. Zhuravlev, “Razbieniya Rozi i mnozhestva ogranichennogo ostatka na tore”, Trudy po teorii chisel, Zap. nauchn. sem. POMI, 322, POMI, SPb., 2005, 83–106 | MR | Zbl

[12] A. V. Shutov, “Dvumernaya problema Gekke–Kestena”, Chebyshevskii sb., 12:2 (2011), 151–162 | MR | Zbl

[13] A. V. Shutov, “Ob odnom semeistve dvumernykh mnozhestv ogranichennogo ostatka”, Chebyshevskii sb., 12:4 (2011), 264–271 | MR | Zbl

[14] S. Ferenczi, “Bounded remainder sets”, Acta Arith., 61:4 (1992), 319–326 | MR | Zbl

[15] G. Rauzy, Ensembles à restes bornés, Exp. No. 24, Seminaire de Theorie des Nombres, Univ. Bordeaux I, 1984 | MR | Zbl

[16] V. G. Zhuravlev, “Mnogomernaya teorema Gekke o raspredelenii drobnykh chastei”, Algebra i analiz, 24:1 (2012), 95–130 | MR | Zbl

[17] V. V. Krasilschikov, A. V. Shutov, “Opisanie i tochnye znacheniya maksimuma i minimuma ostatochnogo chlena problemy raspredeleniya drobnykh dolei”, Matem. zametki, 89:1 (2011), 43–52 | DOI | MR

[18] A. V. Shutov, “Optimalnye otsenki v probleme raspredeleniya drobnykh dolei na mnozhestvakh ogranichennogo ostatka”, Vestn. SamGU. Estestvennonauchn. ser., 2007, no. 7 (57), 168–175

[19] Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Math., 1794, eds. N. Pytheas Fogg, V. Berthé, S. Ferenczi, C. Mauduit, A. Siegel, Springer-Verlag, Berlin, 2001 | DOI | MR | Zbl

[20] A. V. Shutov, “Perekladyvaniya na tore i mnogomernaya problema Gekke–Kestena”, Uch. zap. Orlovsk. gos. un-ta, 6:2 (2012), 249–253

[21] D. V. Kuznetsova, A. V. Shutov, “O vremenakh pervogo vozvrascheniya dlya sdvigov tora”, Chebyshevskii sb., 14:4 (2013), 127–130 | MR

[22] P. Arnoux, S. Ito, “Pisot substitutions and Rauzy fractals”, Bull. Belg. Math. Soc. Simon Stevin, 8:2 (2011), 181–207 | MR | Zbl

[23] V. G. Zhuravlev, “Odnomernye razbieniya Fibonachchi”, Izv. RAN. Ser. matem., 71:2 (2007), 89–122 | DOI | MR | Zbl

[24] A. V. Shutov, Obobschennye razbieniya Fibonachchi i ikh prilozheniya, Lambert Acad. Publ., 2012

[25] A. V. Shutov, “Sistemy schisleniya i mnozhestva ogranichennogo ostatka”, Chebyshevskii sb., 7:3 (2006), 110–128 | MR | Zbl