The Emergence of Eigenvalues of a $\mathcal{PT}$-Symmetric Operator in a Thin Strip
Matematičeskie zametki, Tome 98 (2015) no. 6, pp. 809-823

Voir la notice de l'article provenant de la source Math-Net.Ru

The Schrödinger operator in a thin infinite strip with $\mathcal{PT}$-symmetric boundary conditions and a localized potential is studied. The case of a virtual level on the threshold of the essential spectrum of an efficient one-dimensional operator is considered. Sufficient conditions for the transformation of this level into an isolated eigenvalue are obtained and the first terms of the asymptotic expansion are calculated for this eigenvalue. Sufficient conditions for the absence of such an eigenvalue are also obtained.
Keywords: elliptic operator, thin infinite strip, $\mathcal{PT}$-symmetric boundary condition, localized potential, isolated eigenvalue, asymptotics.
@article{MZM_2015_98_6_a1,
     author = {D.I. Borisov},
     title = {The {Emergence} of {Eigenvalues} of a $\mathcal{PT}${-Symmetric} {Operator} in a {Thin} {Strip}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {809--823},
     publisher = {mathdoc},
     volume = {98},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a1/}
}
TY  - JOUR
AU  - D.I. Borisov
TI  - The Emergence of Eigenvalues of a $\mathcal{PT}$-Symmetric Operator in a Thin Strip
JO  - Matematičeskie zametki
PY  - 2015
SP  - 809
EP  - 823
VL  - 98
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a1/
LA  - ru
ID  - MZM_2015_98_6_a1
ER  - 
%0 Journal Article
%A D.I. Borisov
%T The Emergence of Eigenvalues of a $\mathcal{PT}$-Symmetric Operator in a Thin Strip
%J Matematičeskie zametki
%D 2015
%P 809-823
%V 98
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a1/
%G ru
%F MZM_2015_98_6_a1
D.I. Borisov. The Emergence of Eigenvalues of a $\mathcal{PT}$-Symmetric Operator in a Thin Strip. Matematičeskie zametki, Tome 98 (2015) no. 6, pp. 809-823. http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a1/