Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_98_6_a1, author = {D.I. Borisov}, title = {The {Emergence} of {Eigenvalues} of a $\mathcal{PT}${-Symmetric} {Operator} in a {Thin} {Strip}}, journal = {Matemati\v{c}eskie zametki}, pages = {809--823}, publisher = {mathdoc}, volume = {98}, number = {6}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a1/} }
D.I. Borisov. The Emergence of Eigenvalues of a $\mathcal{PT}$-Symmetric Operator in a Thin Strip. Matematičeskie zametki, Tome 98 (2015) no. 6, pp. 809-823. http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a1/
[1] D. Borisov, D. Krejčiřík, “The effective Hamiltonian for thin layers with non-Hermitian Robin-type boundary conditions”, Asymptot. Anal., 76:1 (2012), 49–59 | MR | Zbl
[2] D. I. Borisov, “Diskretnyi spektr tonkogo $\mathcal{PT}$-simmetrichnogo volnovoda”, Ufimsk. matem. zhurn., 6:1 (2014), 30–58
[3] C. M. Bender, S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having $\mathcal{PT}$ symmetry”, Phys. Rev. Lett., 80:24 (1998), 5243–5246 | DOI | MR | Zbl
[4] A. Mostafazadeh, “Pseudo-Hermiticity versus $PT$-Symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian”, J. Math. Phys., 43:1 (2002), 205–214 | DOI | MR | Zbl
[5] A. Mostafazadeh, “Pseudo-Hermiticity versus $PT$-Symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum”, J. Math. Phys., 43:5 (2002), 2814–2816 | DOI | MR | Zbl
[6] A. Mostafazadeh, “Pseudo-Hermiticity versus $PT$-Symmetry. III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries”, J. Math. Phys., 43:8 (2002), 3944–3951 | DOI | MR | Zbl
[7] A. Mostafazadeh, “On the Pseudo-Hermiticity of a class of PT-symmetric Hamiltonians in one dimension”, Mod. Phys. Lett. A, 17:30 (2002), 1973–1977 | DOI | MR | Zbl
[8] M. Znojil, “Exact solution for Morse oscillator in PT-symmetric quantum mechanics”, Phys. Lett. A, 264:2-3 (1999), 108–111 | DOI | MR | Zbl
[9] M. Znojil, “Non-Hermitian matrix description of the $\mathcal{PT}$-symmetric anharmonic oscillators”, J. Phys. A: Math. Gen., 32:42 (1999), 7419–7428 | DOI | MR | Zbl
[10] M. Znojil, “$\mathcal{PT}$-symmetric harmonic oscillators”, Phys. Lett. A, 259:3-4 (1999), 220–223 | DOI | MR | Zbl
[11] G. Lévai, M. Znojil, “Systematic search for $\mathcal{PT}$-symmetric potentials with real energy spectra”, J. Phys. A: Math. Gen., 33:40 (2000), 7165–7180 | DOI | MR | Zbl
[12] C. M. Bender, “Making sense of non-Hermitian Hamiltionians”, Rep. Prog. Phys., 70:6 (2007), 947–1018 | DOI | MR
[13] E. Caliceti, F. Cannata, S. Graffi, “Perturbation theory of $\mathcal{PT}$-symmetric Hamiltonians”, J. Phys. A, 39:32 (2006), 10019–10027 | DOI | MR | Zbl
[14] P. Dorey, C. Dunning, R. Tateo, “Spectral equivalences, Bethe ansatz equations, and reality properties in $\mathcal{PT}$-symmetric quantum mechanics”, J. Phys. A, 34:28 (2001), 5679–5704 | DOI | MR | Zbl
[15] H. Langer, Ch. Tretter, “A Krein space approach to PT-symmetry”, Czechoslovak J. Phys., 54:10 (2004), 1113–1120 | DOI | MR | Zbl
[16] K. C. Shin, “On the reality of the eigenvalues for a class of $\mathcal{PT}$-symmetric oscillators”, Commun. Math. Phys., 229:3 (2002), 543–564 | DOI | MR | Zbl
[17] M. Znojil, “$\mathcal{PT}$-symmetric square well”, Phys. Lett. A, 285:1-2 (2001), 7–10 | DOI | MR | Zbl
[18] D. Borisov, D. Krejčiřík, “$\mathcal{PT}$-symmetric waveguide”, Integral Equations Operator Theory, 62:4 (2008), 489–515 | DOI | MR | Zbl
[19] D. Borisov, “On a quantum waveguide with a small PT-symmetric perturbation”, Acta Polytechnica, 47:2-3 (2007), 57–59
[20] D. Borisov, “O $\mathcal{PT}$-simmetrichnom volnovode s paroi malykh otverstii”, Tr. IMM UrO RAN, 18, no. 2, 2012, 22–37
[21] S. A. Nazarov, Asimptoticheskii analiz tonkikh plastin i sterzhnei T. 1. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002
[22] G. Panasenko, Multi-Scale Modelling for Structures and Composites, Springer, Dordrecht, 2005 | MR
[23] D. Borisov, P. Freitas, “Singular asymptotic expansions for Dirichlet eigenvalues and eigenfunctions on thin planar domains”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26:2 (2009), 547–560 | DOI | MR | Zbl
[24] D. Borisov, G. Cardone, “Complete asymptotic expansions for the eigenvalues of the Dirichlet Laplacian in thin three-dimensional rods”, ESAIM Control Optim. Calc. Var., 17:3 (2011), 887–908 | DOI | MR | Zbl
[25] G. Cardone, A. Corbo Esposito, G. P. Panasenko, “Asymptotic partial decomposition for diffusion with sorption in thin structures”, Nonlinear Anal., Theory Methods Appl., 65:1 (2006), 79–106 | DOI | MR | Zbl
[26] G. P. Panasenko, E. Pérez, “Asymptotic partial decomposition of domain for spectral problems in rod structures”, J. Math. Pures Appl. (9), 87:1 (2007), 1–36 | DOI | MR | Zbl
[27] V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskii, “Asimptoticheskie resheniya nerelyativistskikh uravnenii kvantovoi mekhaniki v iskrivlennykh nanotrubkakh. I. Reduktsiya k prostranstvenno-odnomernym uravneniyam”, TMF, 141:2 (2004), 267–303 | DOI | MR | Zbl
[28] V. V. Grushin, “Asimptoticheskoe povedenie sobstvennykh znachenii operatora Laplasa v tonkikh beskonechnykh trubkakh”, Matem. zametki, 85:5 (2009), 687–701 | DOI | MR | Zbl
[29] V. V. Belov, S. Yu. Dobrokhotov, S. O. Sinitsyn, “Asimptoticheskie resheniya uravneniya Shredingera v tonkikh trubkakh”, Asimptoticheskie razlozheniya. Teoriya priblizhenii. Topologiya, Sbornik statei, Tr. IMM UrO RAN, 9, no. 1, 2003, 15–25 | MR | Zbl
[30] V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskii, “Quantum and classical dynamics of electron in thin curved tubes with spin and external electromagnetic fields taken into account”, Russ. J. Math. Phys., 11:1 (2004), 109–119 | MR | Zbl
[31] V. V. Grushin, “Asimptoticheskoe povedenie sobstvennykh znachenii operatora Shredingera v tonkikh zamknutykh trubkakh”, Matem. zametki, 83:4 (2008), 503–519 | DOI | MR | Zbl
[32] I. M. Glazman, Pryamye metody spektralnogo kachestvennogo analiza singulyarnykh differentsialnykh operatorov, Fizmatlit, M., 1963 | MR | Zbl
[33] R. R. Gadylshin, “O lokalnykh vozmuscheniyakh operatora Shredingera na osi”, TMF, 132:1 (2002), 97–104 | DOI | MR | Zbl
[34] D. I. Borisov, “Diskretnyi spektr pary nesimmetrichnykh volnovodov, soedinennykh oknom”, Matem. sb., 197:4 (2006), 3–32 | DOI | MR | Zbl
[35] D. I. Borisov, “O spektre dvumernogo periodicheskogo operatora s malym lokalizovannym vozmuscheniem”, Izv. RAN. Ser. matem., 75:3 (2011), 29–64 | DOI | MR | Zbl
[36] A. Majda, “Outgoing solutions for perturbation of $-\Delta$ with applications to spectral and scattering theory”, J. Differential Equations, 16:3 (1974), 515–547 | DOI | MR | Zbl
[37] E. Sanches-Palensiya, Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR | Zbl
[38] D. Borisov, P. Exner, R. Gadyl'shin, “Geometric coupling thresholds in a two-dimensional strip”, J. Math. Phys., 43:12 (2002), 6265–6278 | DOI | MR | Zbl