A Seven-Dimensional Family of Simple Harmonic Functions
Matematičeskie zametki, Tome 98 (2015) no. 6, pp. 803-808.

Voir la notice de l'article provenant de la source Math-Net.Ru

From the point of view of analytic complexity theory, all harmonic functions of two variables split into three classes: functions of complexity zero, one, and two. Only linear functions of one variable have complexity zero. This paper contains a complete description of simple harmonic functions, i.e., of functions of analytic complexity one. These functions constitute a seven-dimensional family expressible as integrals of elliptic functions. All other harmonic functions have complexity two and are, in this sense, of higher complexity. Solutions of the wave equation, the heat equation, and the Hopf equation are also studied.
Keywords: analytical complexity, harmonic function, elliptic function.
@article{MZM_2015_98_6_a0,
     author = {V. K. Beloshapka},
     title = {A {Seven-Dimensional} {Family} of {Simple} {Harmonic} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--808},
     publisher = {mathdoc},
     volume = {98},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a0/}
}
TY  - JOUR
AU  - V. K. Beloshapka
TI  - A Seven-Dimensional Family of Simple Harmonic Functions
JO  - Matematičeskie zametki
PY  - 2015
SP  - 803
EP  - 808
VL  - 98
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a0/
LA  - ru
ID  - MZM_2015_98_6_a0
ER  - 
%0 Journal Article
%A V. K. Beloshapka
%T A Seven-Dimensional Family of Simple Harmonic Functions
%J Matematičeskie zametki
%D 2015
%P 803-808
%V 98
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a0/
%G ru
%F MZM_2015_98_6_a0
V. K. Beloshapka. A Seven-Dimensional Family of Simple Harmonic Functions. Matematičeskie zametki, Tome 98 (2015) no. 6, pp. 803-808. http://geodesic.mathdoc.fr/item/MZM_2015_98_6_a0/

[1] L. Blum, M. Shub, S. Smale, “On a theory of computation and complexity over the real numbers: $NP$- completeness, recursive functions and universal machines”, Bull. Amer. Math. Soc. (N.S.), 21:1 (1989), 1–46 | DOI | MR | Zbl

[2] D. Yu. Grigor'ev, “Additive complexity in directed computations”, Theoret. Comput. Sci., 19:1 (1982), 39–67 | DOI | MR | Zbl

[3] A. Ostrowski, “Über Dirichletsche Reihen und algebraische Differentialgleichungen”, Math. Z., 8:3 (1920), 241–298 | DOI | MR | Zbl

[4] A. G. Vitushkin, “13-ya problema Gilberta i smezhnye voprosy”, UMN, 59:1(355) (2004), 11–24 | DOI | MR | Zbl

[5] V. K. Beloshapka, “Analytic complexity of functions of two variables”, Russ. J. Math. Phys., 14:3 (2007), 243–249 | DOI | MR | Zbl

[6] V. K. Beloshapka, “Analytical complexity: development of the topic”, Russ. J. Math. Phys., 19:4 (2012), 428–439 | DOI | MR | Zbl

[7] V. A. Krasikov, T. M. Sadykov, “Ob analiticheskoi slozhnosti diskriminantov”, Analiticheskie i geometricheskie voprosy kompleksnogo analiza, Tr. MIAN, 279, MAIK, M., 2012, 86–101 | MR | Zbl