Spectral Sequence and Finitely Presented Dimension for Weak Hopf--Galois Extensions
Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 756-768.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be a weak Hopf algebra, $A$ a right weak $H$-comodule algebra, and $B$ the subalgebra of the $H$-coinvariant elements of $A$. Let $A/B$ be a right weak $H$-Galois extension. In this paper, a spectral sequence for $\operatorname{Ext}$ which yields an estimate for the global dimension of $A$ in terms of the corresponding data for $H$ and $B$ is constructed. Next, the relationship between the finitely presented dimensions of $A$ and its subalgebra $B$ are given. Further, the case in which $A$ is an $n$-Gorenstein algebra is studied.
Keywords: weak Hopf–Galois extension, spectral sequence, finitely presented dimension, Gorenstein algebra.
@article{MZM_2015_98_5_a8,
     author = {X. Y. Zhou and T. Yang},
     title = {Spectral {Sequence} and {Finitely} {Presented} {Dimension} for {Weak} {Hopf--Galois} {Extensions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {756--768},
     publisher = {mathdoc},
     volume = {98},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a8/}
}
TY  - JOUR
AU  - X. Y. Zhou
AU  - T. Yang
TI  - Spectral Sequence and Finitely Presented Dimension for Weak Hopf--Galois Extensions
JO  - Matematičeskie zametki
PY  - 2015
SP  - 756
EP  - 768
VL  - 98
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a8/
LA  - ru
ID  - MZM_2015_98_5_a8
ER  - 
%0 Journal Article
%A X. Y. Zhou
%A T. Yang
%T Spectral Sequence and Finitely Presented Dimension for Weak Hopf--Galois Extensions
%J Matematičeskie zametki
%D 2015
%P 756-768
%V 98
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a8/
%G ru
%F MZM_2015_98_5_a8
X. Y. Zhou; T. Yang. Spectral Sequence and Finitely Presented Dimension for Weak Hopf--Galois Extensions. Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 756-768. http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a8/

[1] T. Hayashi, “Quantum group symmetry of partition functions of IRF models and its applications to Jones's index theory”, Comm. Math. Phys., 157:2 (1993), 331–345 | DOI | MR | Zbl

[2] D. Nikshych, L. Vainerman, “Finite quantum groupoids and their applications”, New Directions in Hopf Algebras, Math. Sci. Res. Inst. Publ., 43, Cambridge Univ. Press, Cambridge, 2002, 211–262 | MR | Zbl

[3] T. Yamanouchi, “Duality for generalized Kac algebras and a characterization of finite groupoid algebras”, J. Algebra, 163:1 (1994), 9–50 | DOI | MR | Zbl

[4] G. Böhm, K. Szlachányi, “Weak Hopf algebras. II. Representation theory, dimension, and the Markov trace”, J. Algebra, 233:1 (2000), 156–212 | DOI | MR | Zbl

[5] G. Böhm, F. Nill, K. Szlachányi, “Weak Hopf algebras. I. Integral theory and $C^{*}$-structure”, J. Algebra, 221:2 (1999), 385–438 | DOI | MR | Zbl

[6] S. Caenepeel, E. De Groot, “Galois theory for weak Hopf algebras”, Rev. Roumaine Math. Pures Appl., 52:2 (2007), 151–176 | MR | Zbl

[7] M. E. Sweedler, “The predual theorem to the Jacobson–Bourbaki theorem”, Trans. Amer. Math. Soc., 213 (1975), 391–406 | DOI | MR | Zbl

[8] G. Böhm, “Galois theory for Hopf algebroids”, Ann. Univ. Ferrara Sez. VII (N.S.), 51 (2005), 233–262 | MR | Zbl

[9] L. Kadison, “Galois theory for bialgebroids, depth two and normal Hopf subalgebras”, Ann. Univ. Ferrara Sez. VII (N.S.), 51 (2005), 209–231 | MR | Zbl

[10] L. Liu, B.-L. Shen, S.-h. Wang, “On weak crossed products of weak Hopf algebras”, Algebr. Represent. Theory, 16:3 (2013), 633–657 | DOI | MR | Zbl

[11] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Regional Conf. Ser. in Math., 82, Amer. Math. Soc., Providence, RI, 1993 | DOI | MR | Zbl

[12] M. E. Sweedler, Hopf Algebras, Math. Lecture Note Ser., W. A. Benjamin, New York, 1969 | MR | Zbl

[13] S. Caenepeel, E. De Groot, “Modules over weak entwining structures”, New Trends in Hopf Algebra Theory, Contemp. Math., 267, Amer. Math. Soc., Providence, RI, 2000, 31–54 | DOI | MR | Zbl

[14] G. Böhm, “Doi–Hopf modules over weak Hopf algebras”, Comm. Algebra, 28:10 (2000), 4687–4698 | DOI | MR | Zbl

[15] R. F. Niu, Y. Wang, L. Y. Zhang, “The structure theorem of endomorphism algebras for weak Doi–Hopf modules”, Acta Math. Hungar., 127:3 (2010), 273–290 | DOI | MR | Zbl

[16] H.-J. Schneider, “Representation theory of Hopf–Galois extensions”, Israel J. Math., 72:1-2 (1990), 196–231 | DOI | MR | Zbl

[17] J. J. Rotman, An Introduction to Homological Algebra, Universitext, Springer, New York, 2009 | MR | Zbl

[18] D. Wang, S. Yang, “Representations of weak Hopf algebras associated to cyclic quivers”, Comm. Algebra, 33:11 (2005), 4321–4335 | DOI | MR | Zbl

[19] C. Năstăsescu, F. Panaite, F. Van Oystaeyen, “External homogenization for Hopf algebras: applications to Maschke's theorem”, Algebr. Represent. Theory, 2:3 (1999), 211–226 | DOI | MR | Zbl

[20] H. K. Ng, “Finitely presented dimension of commutative rings and modules”, Pacific J. Math., 113:2 (1984), 417–431 | DOI | MR | Zbl

[21] G. Böhm, T. Brzeziński, “Cleft extensions of Hopf algebroids”, Appl. Categ. Structures, 14:5-6 (2006), 431–469 | DOI | MR | Zbl

[22] D. Nikshych, “A duality theorem for quantum groupoids”, New Trends in Hopf Algebra Theory, Contemp. Math., 267, Amer. Math. Soc., Providence, RI, 2000, 237–243 | DOI | MR | Zbl

[23] E. E. Enochs, O. M. G. Jenda, Relative Homological Algebra, De Gruyter Exp. Math., 30, Walter de Gruyter, Berlin, 2000 | MR | Zbl

[24] M. Auslander, I. Reiten, S. O Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math., 36, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl