Spectral Sequence and Finitely Presented Dimension for Weak Hopf--Galois Extensions
Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 756-768
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $H$ be a weak Hopf algebra, $A$ a right weak $H$-comodule algebra, and $B$ the subalgebra of the $H$-coinvariant elements of $A$. Let $A/B$ be a right weak $H$-Galois extension. In this paper, a spectral sequence for $\operatorname{Ext}$ which yields an estimate for the global dimension of $A$ in terms of the corresponding data for $H$ and $B$ is constructed. Next, the relationship between the finitely presented dimensions of $A$ and its subalgebra $B$ are given. Further, the case in which $A$ is an $n$-Gorenstein algebra is studied.
Keywords:
weak Hopf–Galois extension, spectral sequence, finitely presented dimension, Gorenstein algebra.
@article{MZM_2015_98_5_a8,
author = {X. Y. Zhou and T. Yang},
title = {Spectral {Sequence} and {Finitely} {Presented} {Dimension} for {Weak} {Hopf--Galois} {Extensions}},
journal = {Matemati\v{c}eskie zametki},
pages = {756--768},
publisher = {mathdoc},
volume = {98},
number = {5},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a8/}
}
TY - JOUR AU - X. Y. Zhou AU - T. Yang TI - Spectral Sequence and Finitely Presented Dimension for Weak Hopf--Galois Extensions JO - Matematičeskie zametki PY - 2015 SP - 756 EP - 768 VL - 98 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a8/ LA - ru ID - MZM_2015_98_5_a8 ER -
X. Y. Zhou; T. Yang. Spectral Sequence and Finitely Presented Dimension for Weak Hopf--Galois Extensions. Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 756-768. http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a8/