Just Infinite Alternative Algebras
Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 747-755

Voir la notice de l'article provenant de la source Math-Net.Ru

Alternative just infinite-dimensional algebras are studied, i.e., infinite-dimensional algebras in which every nonzero ideal has finite codimension. It is proved that these algebras are prime. In the nonassociative case, the Noetherian property with respect to one-sided ideals is proved, and the cases of Cayley–Dickson rings and exceptional algebras are investigated.
Keywords: alternative algebra, just infinite-dimensional algebra, prime algebra, Noetherian property with respect to one-sided ideals, Cayley–Dickson ring, exceptional algebra.
@article{MZM_2015_98_5_a7,
     author = {A. S. Panasenko},
     title = {Just {Infinite} {Alternative} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {747--755},
     publisher = {mathdoc},
     volume = {98},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a7/}
}
TY  - JOUR
AU  - A. S. Panasenko
TI  - Just Infinite Alternative Algebras
JO  - Matematičeskie zametki
PY  - 2015
SP  - 747
EP  - 755
VL  - 98
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a7/
LA  - ru
ID  - MZM_2015_98_5_a7
ER  - 
%0 Journal Article
%A A. S. Panasenko
%T Just Infinite Alternative Algebras
%J Matematičeskie zametki
%D 2015
%P 747-755
%V 98
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a7/
%G ru
%F MZM_2015_98_5_a7
A. S. Panasenko. Just Infinite Alternative Algebras. Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 747-755. http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a7/