Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_98_5_a5, author = {V. L. Kamynin}, title = {On the {Solvability} of the {Inverse} {Problem} for {Determining} the {Right-Hand} {Side} of a {Degenerate} {Parabolic} {Equation} with {Integral} {Observation}}, journal = {Matemati\v{c}eskie zametki}, pages = {710--724}, publisher = {mathdoc}, volume = {98}, number = {5}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a5/} }
TY - JOUR AU - V. L. Kamynin TI - On the Solvability of the Inverse Problem for Determining the Right-Hand Side of a Degenerate Parabolic Equation with Integral Observation JO - Matematičeskie zametki PY - 2015 SP - 710 EP - 724 VL - 98 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a5/ LA - ru ID - MZM_2015_98_5_a5 ER -
%0 Journal Article %A V. L. Kamynin %T On the Solvability of the Inverse Problem for Determining the Right-Hand Side of a Degenerate Parabolic Equation with Integral Observation %J Matematičeskie zametki %D 2015 %P 710-724 %V 98 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a5/ %G ru %F MZM_2015_98_5_a5
V. L. Kamynin. On the Solvability of the Inverse Problem for Determining the Right-Hand Side of a Degenerate Parabolic Equation with Integral Observation. Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 710-724. http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a5/
[1] S. N. Kruzhkov, “Kvazilineinye parabolicheskie uravneniya i sistemy s dvumya nezavisimymi peremennymi”, Tr. sem. im. I. G. Petrovskogo, 5, Izd-vo Mosk. un-ta, M., 1979, 217–272 | MR | Zbl
[2] A. I. Prilepko, D. G. Orlovskii, “Ob opredelenii parametra evolyutsionnogo uravneniya v obratnykh zadachakh matematicheskoi fiziki. I”, Differents. uravneniya, 21:1 (1985), 119–129 | MR | Zbl
[3] A. I. Prilepko, D. G. Orlovskii, “Ob opredelenii parametra evolyutsionnogo uravneniya v obratnykh zadachakh matematicheskoi fiziki .II”, Differents. uravneniya, 21:4 (1985), 694–700 | MR
[4] J. R. Cannon, Y. Lin, “Determination of a parameter $p(t)$ in some quasilinear parabolic differential equations”, Inverse Problems, 4:1 (1988), 35–45 | DOI | MR | Zbl
[5] J. R. Cannon, Y. Lin, “Determination of a parameter $p(t)$ in a Hölder classes for some semilinear parabolic equations”, Inverse Problems, 4:3 (1988), 595–606 | DOI | MR | Zbl
[6] V. L. Kamynin, “On convergence of the solutions of inverse problems for parabolic equations with weakly converging coefficients”, Elliptic and Parabolic Problems, Pitman Res. Notes Math. Ser., 325, Longman Sci. Tech., Harlow, 1995, 130–151 | MR | Zbl
[7] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Monogr. Textbooks Pure Appl. Math., 231, Marcel Dekker, New York, 2000 | MR | Zbl
[8] V. L. Kamynin, E. Franchini, “Ob odnoi obratnoi zadache dlya parabolicheskogo uravneniya vysokogo poryadka”, Matem. zametki, 64:5 (1998), 680–691 | DOI | MR | Zbl
[9] M. Ivanchov, N. Saldina, “An inverse problem for strongly degenerate heat equation”, J. Inverse Ill-Posed Probl., 14:5 (2006), 465–480 | DOI | MR | Zbl
[10] P. Cannarsa, J. Tort, M. Yamamoto, “Determination of source terms in a degenerate parabolic equation”, Inverse Problems, 26:10 (2010), 105003 | DOI | MR | Zbl
[11] Z.-C. Deng, L. Yang, “An inverse problem of identifying the coefficient of first-order in a degenerate parabolic equation”, J. Comput. Appl. Math., 235:15 (2011), 4404–4417 | DOI | MR | Zbl
[12] Z.-C. Deng, K. Qian, X.-B. Rao, L. Yang, G.-W. Luo, “An inverse problem of identifying the source coefficient in a degenerate heat equation”, Inverse Probl. Sci. Eng., 23:3 (2014), 498–517 | DOI | MR
[13] Z. Deng, L. Yang, “An inverse problem of identifying the radiative coefficient in degenerate parabolic equation”, Chin. Ann. Math. Ser. B, 35:3 (2014), 355–382 | DOI | MR | Zbl
[14] N. Huzyk, “Inverse problem of determining the coefficients in a degenerate parabolic equation”, Electron. J. Differential Equations, 2014, Paper No. 172 | MR | Zbl
[15] A. Kawamoto, “Inverse problems for linear degenerate parabolic equations by “time-like” Carleman estimate”, J. Inverse Ill-Posed Probl., 23:1 (2015), 1–21 | DOI | MR | Zbl
[16] I. Bouchouev, V. Isakov, “Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets”, Inverse Problems, 15:3 (1999), R95–R116 | DOI | MR | Zbl
[17] L. Jiang, Y. Tao, “Identifying the volatibility of underlying assets from option prices”, Inverse Problems, 17:1 (2001), 137–155 | DOI | MR | Zbl
[18] L. Jiang, Q. Chen, L. Wang, J. E. Zhang, “A new well-posed algorithm to recover implied local volatility”, Quant. Finance, 3:6 (2003), 451–457 | DOI | MR
[19] S. N. Kruzhkov, Nelineinye uravneniya s chastnymi proizvodnymi, Ch. 1, Izd-vo Mosk. un-ta, M., 1969
[20] L. A. Lyusternik, V. I. Sobolev, Kratkii kurs funktsionalnogo analiza, Vysshaya shkola, M., 1982 | MR | Zbl