Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_98_5_a2, author = {D. Zaev}, title = {On the {Monge--Kantorovich} {Problem} with {Additional} {Linear} {Constraints}}, journal = {Matemati\v{c}eskie zametki}, pages = {664--683}, publisher = {mathdoc}, volume = {98}, number = {5}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a2/} }
D. Zaev. On the Monge--Kantorovich Problem with Additional Linear Constraints. Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 664-683. http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a2/
[1] V. I. Bogachev, A. V. Kolesnikov, “Zadacha Monzha–Kantorovicha: dostizheniya, svyazi i perspektivy”, UMN, 67:5 (2012), 3–110 | DOI | MR | Zbl
[2] C. Villani, Optimal Transport. Old and New, Grundlehren Math. Wiss., 338, Springer-Verlag, Berlin, 2009 | DOI | MR | Zbl
[3] M. Beiglboeck, C. Griessler, An Optimality Principle with Applications in Optimal Transport, 2014, arXiv: 1404.7054
[4] D. Hobson, “The Skorokhod embedding problem and model-independent bounds for option prices”, Paris–Princeton Lectures on Mathematical Finance 2010, Lecture Notes in Math., 2003, Springer-Verlag, Berlin, 2011, 267–318 | DOI | MR | Zbl
[5] M. Beiglboeck, P. Henry-Labordère, F. Penkner, “Model-independent bounds for option prices – a mass transport approach”, Finance Stoch., 17:3 (2013), 477–501 | DOI | MR | Zbl
[6] M. Beiglboeck, N. Juillet, On a Problem of Optimal Transport Under Marginal Martingale Constraints, 2012, arXiv: 1208.1509
[7] A. O. Lopes, J. K. Mengue, “Duality theorems in ergodic transport”, J. Stat. Physics, 149:5 (2012), 921–942 | DOI | MR | Zbl
[8] A. Moameni, Invariance Properties of the Monge–Kantorovich Mass Transport Problem, 2013, arXiv: 1311.7051
[9] A. M. Vershik, P. B. Zatitskiy, F. V. Petrov, “Virtual continuity of measurable functions of several variables and embedding theorems”, Funct. Anal. Appl., 47:3 (2013), 165–173 | DOI | MR | Zbl
[10] S. T. Rachev, L. Ruschendorf, Mass Transportation Problems. V. I. Theory, Probab. Appl. (N. Y.), Springer-Verlag, New York, 1998 | MR | Zbl
[11] H. G. Kellerer, “Duality theorems for marginal problems”, Z. Wahrsch. Verw. Gebiete, 67:4 (1984), 399–432 | DOI | MR | Zbl
[12] D. R. Adams, L. I. Hedberg, Function Spaces and Potential Theory, Grundlehren Math. Wiss., 314, Springer-Verlag, Berlin, 1996 | DOI | MR | Zbl
[13] A. V. Kolesnikov, D. A. Zaev, Optimal Transportation of Processes with Infinite Kantorovich Distance. Independence and Symmetry, 2013, arXiv: 1303.7255
[14] D. B. Bukin, “On the Monge and Kantorovich problems for distributions of diffusion processes”, Math. Notes, 96:5 (2014), 864–870 | DOI | MR | Zbl
[15] V. I. Bogachev, Measure Theory, Vol. I, II, Springer-Verlag, Berlin, 2007 | MR | Zbl