On the Monge--Kantorovich Problem with Additional Linear Constraints
Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 664-683.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Monge–Kantorovich problem with the following additional constraint is considered: the admissible transportation plan must become zero on a fixed subspace of functions. Different subspaces give rise to different additional conditions on transportation plans. The main results are stated in general form and can be carried over to a number of important special cases. They are also valid for the Monge–Kantorovich problem whose solution is sought for the class of invariant or martingale measures. We formulate and prove a criterion for the existence of an optimal solution, a duality assertion of Kantorovich type, and a necessary geometric condition on the support of the optimal measure similar to the standard condition for $c$-monotonicity.
Keywords: Monge–Kantorovich problem, Kantorovich duality.
Mots-clés : optimal transportation plan
@article{MZM_2015_98_5_a2,
     author = {D. Zaev},
     title = {On the {Monge--Kantorovich} {Problem} with {Additional} {Linear} {Constraints}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {664--683},
     publisher = {mathdoc},
     volume = {98},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a2/}
}
TY  - JOUR
AU  - D. Zaev
TI  - On the Monge--Kantorovich Problem with Additional Linear Constraints
JO  - Matematičeskie zametki
PY  - 2015
SP  - 664
EP  - 683
VL  - 98
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a2/
LA  - ru
ID  - MZM_2015_98_5_a2
ER  - 
%0 Journal Article
%A D. Zaev
%T On the Monge--Kantorovich Problem with Additional Linear Constraints
%J Matematičeskie zametki
%D 2015
%P 664-683
%V 98
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a2/
%G ru
%F MZM_2015_98_5_a2
D. Zaev. On the Monge--Kantorovich Problem with Additional Linear Constraints. Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 664-683. http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a2/

[1] V. I. Bogachev, A. V. Kolesnikov, “Zadacha Monzha–Kantorovicha: dostizheniya, svyazi i perspektivy”, UMN, 67:5 (2012), 3–110 | DOI | MR | Zbl

[2] C. Villani, Optimal Transport. Old and New, Grundlehren Math. Wiss., 338, Springer-Verlag, Berlin, 2009 | DOI | MR | Zbl

[3] M. Beiglboeck, C. Griessler, An Optimality Principle with Applications in Optimal Transport, 2014, arXiv: 1404.7054

[4] D. Hobson, “The Skorokhod embedding problem and model-independent bounds for option prices”, Paris–Princeton Lectures on Mathematical Finance 2010, Lecture Notes in Math., 2003, Springer-Verlag, Berlin, 2011, 267–318 | DOI | MR | Zbl

[5] M. Beiglboeck, P. Henry-Labordère, F. Penkner, “Model-independent bounds for option prices – a mass transport approach”, Finance Stoch., 17:3 (2013), 477–501 | DOI | MR | Zbl

[6] M. Beiglboeck, N. Juillet, On a Problem of Optimal Transport Under Marginal Martingale Constraints, 2012, arXiv: 1208.1509

[7] A. O. Lopes, J. K. Mengue, “Duality theorems in ergodic transport”, J. Stat. Physics, 149:5 (2012), 921–942 | DOI | MR | Zbl

[8] A. Moameni, Invariance Properties of the Monge–Kantorovich Mass Transport Problem, 2013, arXiv: 1311.7051

[9] A. M. Vershik, P. B. Zatitskiy, F. V. Petrov, “Virtual continuity of measurable functions of several variables and embedding theorems”, Funct. Anal. Appl., 47:3 (2013), 165–173 | DOI | MR | Zbl

[10] S. T. Rachev, L. Ruschendorf, Mass Transportation Problems. V. I. Theory, Probab. Appl. (N. Y.), Springer-Verlag, New York, 1998 | MR | Zbl

[11] H. G. Kellerer, “Duality theorems for marginal problems”, Z. Wahrsch. Verw. Gebiete, 67:4 (1984), 399–432 | DOI | MR | Zbl

[12] D. R. Adams, L. I. Hedberg, Function Spaces and Potential Theory, Grundlehren Math. Wiss., 314, Springer-Verlag, Berlin, 1996 | DOI | MR | Zbl

[13] A. V. Kolesnikov, D. A. Zaev, Optimal Transportation of Processes with Infinite Kantorovich Distance. Independence and Symmetry, 2013, arXiv: 1303.7255

[14] D. B. Bukin, “On the Monge and Kantorovich problems for distributions of diffusion processes”, Math. Notes, 96:5 (2014), 864–870 | DOI | MR | Zbl

[15] V. I. Bogachev, Measure Theory, Vol. I, II, Springer-Verlag, Berlin, 2007 | MR | Zbl