Quantitative Expressions for the Connectedness of Sets in~${\mathbb R}^n$
Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 643-650
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that, for two arbitrary points $a$ and $b$ of a connected set $E\subset\nobreak {\mathbb R}^n$ ($n\ge 2$) and for any $\varepsilon>0$, there exist points $x_0=a$, $x_2,\dots,x_p=b$ in $E$ such that $$ \|x_1-x_0\|^n+\dots+\|x_p-x_{p-1}\|^n\varepsilon. $$ We prove that the exponent $n$ in this assertion is sharp. The nonexistence of a chain of points in $E$ with
$$
\|x_1-x_0\|^\alpha+\dots+\|x_p-x_{p-1}\|^\alpha\varepsilon
$$
for some $\alpha\in (1,n)$ proves to be equivalent to the existence of a nonconstant function $f\colon E\to {\mathbb R}$ in the class $\operatorname{Lip}_\alpha(E)$. For each such $\alpha$, we construct a curve $E(\alpha)$ of Hausdorff dimension $\alpha$ in ${\mathbb R}^n$ and a nonconstant function $f\colon E(\alpha)\to {\mathbb R}$ such that $f\in\operatorname{Lip}_\alpha(E(\alpha))$.
Keywords:
connectedness, Lipschitz property, Euclidean space.
Mots-clés : Hausdorff dimension
Mots-clés : Hausdorff dimension
@article{MZM_2015_98_5_a0,
author = {P. A. Borodin and O. N. Kosukhin},
title = {Quantitative {Expressions} for the {Connectedness} of {Sets} in~${\mathbb R}^n$},
journal = {Matemati\v{c}eskie zametki},
pages = {643--650},
publisher = {mathdoc},
volume = {98},
number = {5},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a0/}
}
TY - JOUR
AU - P. A. Borodin
AU - O. N. Kosukhin
TI - Quantitative Expressions for the Connectedness of Sets in~${\mathbb R}^n$
JO - Matematičeskie zametki
PY - 2015
SP - 643
EP - 650
VL - 98
IS - 5
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a0/
LA - ru
ID - MZM_2015_98_5_a0
ER -
P. A. Borodin; O. N. Kosukhin. Quantitative Expressions for the Connectedness of Sets in~${\mathbb R}^n$. Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 643-650. http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a0/