Quantitative Expressions for the Connectedness of Sets in ${\mathbb R}^n$
Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 643-650
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that, for two arbitrary points $a$ and $b$ of a connected set $E\subset\nobreak {\mathbb R}^n$ ($n\ge 2$) and for any $\varepsilon>0$, there exist points $x_0=a$, $x_2,\dots,x_p=b$ in $E$ such that $$ \|x_1-x_0\|^n+\dots+\|x_p-x_{p-1}\|^n<\varepsilon. $$ We prove that the exponent $n$ in this assertion is sharp. The nonexistence of a chain of points in $E$ with $$ \|x_1-x_0\|^\alpha+\dots+\|x_p-x_{p-1}\|^\alpha<\varepsilon $$ for some $\alpha\in (1,n)$ proves to be equivalent to the existence of a nonconstant function $f\colon E\to {\mathbb R}$ in the class $\operatorname{Lip}_\alpha(E)$. For each such $\alpha$, we construct a curve $E(\alpha)$ of Hausdorff dimension $\alpha$ in ${\mathbb R}^n$ and a nonconstant function $f\colon E(\alpha)\to {\mathbb R}$ such that $f\in\operatorname{Lip}_\alpha(E(\alpha))$.
Keywords:
connectedness, Lipschitz property, Euclidean space.
Mots-clés : Hausdorff dimension
Mots-clés : Hausdorff dimension
@article{MZM_2015_98_5_a0,
author = {P. A. Borodin and O. N. Kosukhin},
title = {Quantitative {Expressions} for the {Connectedness} of {Sets} in~${\mathbb R}^n$},
journal = {Matemati\v{c}eskie zametki},
pages = {643--650},
year = {2015},
volume = {98},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a0/}
}
P. A. Borodin; O. N. Kosukhin. Quantitative Expressions for the Connectedness of Sets in ${\mathbb R}^n$. Matematičeskie zametki, Tome 98 (2015) no. 5, pp. 643-650. http://geodesic.mathdoc.fr/item/MZM_2015_98_5_a0/
[1] P. A. Borodin, “Priblizhenie naiprosteishimi drobyami s ogranicheniem na polyusy”, Matem. sb., 203:11 (2012), 23–40 | DOI | MR | Zbl
[2] P. A. Borodin, “Plotnost polugruppy v banakhovom prostranstve”, Izv. RAN. Ser. matem., 78:6 (2014), 21–48 | DOI | MR | Zbl
[3] D. Yu. Burago, Yu. D. Burago, S. V. Ivanov, Kurs metricheskoi geometrii, IKI, M.–Izhevsk, 2004