Estimates of Trigonometric Sums over Subgroups and Some of Their Applications
Matematičeskie zametki, Tome 98 (2015) no. 4, pp. 606-625.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain new upper bounds for trigonometric sums over subgroups $\Gamma \subset \mathbb Z_{p}^{*}$ whose size belongs to $[p^{28/95},p^{182/487}]$. Using an approach due to Malykhin, we refine estimates of such sums in $\mathbb Z_{p^{r}}^{*}$ and apply them to the divisibility problem for Fermat quotients.
Keywords: trigonometric sum over a subgroup, coset with respect to a subgroup, set with small multiplicative doubling, Plunnecke's inequality.
Mots-clés : Fermat quotient, Abel transformation
@article{MZM_2015_98_4_a9,
     author = {Yu. N. Shteinikov},
     title = {Estimates of {Trigonometric} {Sums} over {Subgroups} and {Some} of {Their} {Applications}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {606--625},
     publisher = {mathdoc},
     volume = {98},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a9/}
}
TY  - JOUR
AU  - Yu. N. Shteinikov
TI  - Estimates of Trigonometric Sums over Subgroups and Some of Their Applications
JO  - Matematičeskie zametki
PY  - 2015
SP  - 606
EP  - 625
VL  - 98
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a9/
LA  - ru
ID  - MZM_2015_98_4_a9
ER  - 
%0 Journal Article
%A Yu. N. Shteinikov
%T Estimates of Trigonometric Sums over Subgroups and Some of Their Applications
%J Matematičeskie zametki
%D 2015
%P 606-625
%V 98
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a9/
%G ru
%F MZM_2015_98_4_a9
Yu. N. Shteinikov. Estimates of Trigonometric Sums over Subgroups and Some of Their Applications. Matematičeskie zametki, Tome 98 (2015) no. 4, pp. 606-625. http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a9/

[1] J. Bourgain, S. V. Konyagin, I. E. Shparlinski, “Product sets of rationals, multiplicative translates of subgroups in residue rings, and fixed points of the discrete logarithm”, Int. Math. Res. Not. IMRN, 2008, rnn090 | MR | Zbl

[2] S. V. Konyagin, I. E. Shparlinski, Character Sums with Exponential Functions and Their Applications, Cambridge Tracts in Math., 136, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[3] A. García, J. F. Voloch, “Fermat curves over finite fields”, J. Number Theory, 30:3 (1988), 345–356 | DOI | MR | Zbl

[4] S. V. Konyagin, “Otsenki trigonometricheskikh summ po podgruppam i summ Gaussa”, IV Mezhdunarodnaya konferentsiya “Sovremennye problemy teorii chisel i ee prilozheniya”, posvyaschennaya 180-letiyu P. L. Chebysheva i 110-letiyu I. M. Vinogradova. Aktualnye problemy, Ch. III, Izd-vo Mosk. un-ta, 2002, 86–114

[5] J. Bourgain, S. V. Konyagin, “Estimates for the number of sums and products and for exponential sums over subgroups in fields of prime order”, C. R. Math. Acad. Sci. Paris, 337:2 (2003), 75–80 | DOI | MR | Zbl

[6] I. D. Shkredov, “On exponential sums over multiplicative subgroups of medium size”, Finite Fields Appl., 30 (2014), 72–87 | DOI | MR | Zbl

[7] I. D. Shkredov, “Some new inequalities in additive combinatorics”, Mosc. J. Comb. Number Theory, 3:3-4 (2013), 189–239 | MR | Zbl

[8] J. Cilleruelo, M. Z. Garaev, Congruences Involving Product of Intervals and Sets with Small Multiplicative Doubling Modulo a Prime and Applications, arXiv: 1404.5070

[9] Yu. V. Malykhin, “Otsenki trigonometricheskikh summ po modulyu $p^r$”, Matem. zametki, 80:5 (2006), 793–796 | DOI | MR | Zbl

[10] I. D. Shkredov, “On Heilbronn's exponential sum”, Q. J. Math., 64:4 (2013), 1221–1230 | DOI | MR | Zbl

[11] J. Bourgain, K. Ford, S. V. Konyagin, I. E. Shparlinskii, “On the divisibility of Fermat quotients”, Michigan Math. J., 59:2 (2010), 313–328 | DOI | MR | Zbl

[12] U. Betke, M. Henk, J. M. Wills, “Successive-minima-type inequalities”, Discrete Comput. Geom., 9:2 (1993), 165–175 | DOI | MR | Zbl

[13] M. B. Nathanson, Additive Number Theory. Inverse Problems and the Geometry of Sumsets, Grad. Texts in Math., 165, Springer, New York, 1996 | DOI | MR | Zbl

[14] S. Konyagin, C. Pomerance, “On primes recognizable in deterministic polynomial time”, The Mathematics of Paul Erdős, Vol. I, Algorithms Combin., 13, Springer-Verlag, Berlin, 176–198 | DOI | MR | Zbl