Estimates of Trigonometric Sums over Subgroups and Some of Their Applications
Matematičeskie zametki, Tome 98 (2015) no. 4, pp. 606-625
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we obtain new upper bounds for trigonometric sums over subgroups $\Gamma \subset \mathbb Z_{p}^{*}$ whose size belongs to $[p^{28/95},p^{182/487}]$. Using an approach due to Malykhin, we refine estimates of such sums in $\mathbb Z_{p^{r}}^{*}$ and apply them to the divisibility problem for Fermat quotients.
Keywords:
trigonometric sum over a subgroup, coset with respect to a subgroup, set with small multiplicative doubling, Plunnecke's inequality.
Mots-clés : Fermat quotient, Abel transformation
Mots-clés : Fermat quotient, Abel transformation
@article{MZM_2015_98_4_a9,
author = {Yu. N. Shteinikov},
title = {Estimates of {Trigonometric} {Sums} over {Subgroups} and {Some} of {Their} {Applications}},
journal = {Matemati\v{c}eskie zametki},
pages = {606--625},
publisher = {mathdoc},
volume = {98},
number = {4},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a9/}
}
Yu. N. Shteinikov. Estimates of Trigonometric Sums over Subgroups and Some of Their Applications. Matematičeskie zametki, Tome 98 (2015) no. 4, pp. 606-625. http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a9/