Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2015_98_4_a9, author = {Yu. N. Shteinikov}, title = {Estimates of {Trigonometric} {Sums} over {Subgroups} and {Some} of {Their} {Applications}}, journal = {Matemati\v{c}eskie zametki}, pages = {606--625}, publisher = {mathdoc}, volume = {98}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a9/} }
Yu. N. Shteinikov. Estimates of Trigonometric Sums over Subgroups and Some of Their Applications. Matematičeskie zametki, Tome 98 (2015) no. 4, pp. 606-625. http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a9/
[1] J. Bourgain, S. V. Konyagin, I. E. Shparlinski, “Product sets of rationals, multiplicative translates of subgroups in residue rings, and fixed points of the discrete logarithm”, Int. Math. Res. Not. IMRN, 2008, rnn090 | MR | Zbl
[2] S. V. Konyagin, I. E. Shparlinski, Character Sums with Exponential Functions and Their Applications, Cambridge Tracts in Math., 136, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[3] A. García, J. F. Voloch, “Fermat curves over finite fields”, J. Number Theory, 30:3 (1988), 345–356 | DOI | MR | Zbl
[4] S. V. Konyagin, “Otsenki trigonometricheskikh summ po podgruppam i summ Gaussa”, IV Mezhdunarodnaya konferentsiya “Sovremennye problemy teorii chisel i ee prilozheniya”, posvyaschennaya 180-letiyu P. L. Chebysheva i 110-letiyu I. M. Vinogradova. Aktualnye problemy, Ch. III, Izd-vo Mosk. un-ta, 2002, 86–114
[5] J. Bourgain, S. V. Konyagin, “Estimates for the number of sums and products and for exponential sums over subgroups in fields of prime order”, C. R. Math. Acad. Sci. Paris, 337:2 (2003), 75–80 | DOI | MR | Zbl
[6] I. D. Shkredov, “On exponential sums over multiplicative subgroups of medium size”, Finite Fields Appl., 30 (2014), 72–87 | DOI | MR | Zbl
[7] I. D. Shkredov, “Some new inequalities in additive combinatorics”, Mosc. J. Comb. Number Theory, 3:3-4 (2013), 189–239 | MR | Zbl
[8] J. Cilleruelo, M. Z. Garaev, Congruences Involving Product of Intervals and Sets with Small Multiplicative Doubling Modulo a Prime and Applications, arXiv: 1404.5070
[9] Yu. V. Malykhin, “Otsenki trigonometricheskikh summ po modulyu $p^r$”, Matem. zametki, 80:5 (2006), 793–796 | DOI | MR | Zbl
[10] I. D. Shkredov, “On Heilbronn's exponential sum”, Q. J. Math., 64:4 (2013), 1221–1230 | DOI | MR | Zbl
[11] J. Bourgain, K. Ford, S. V. Konyagin, I. E. Shparlinskii, “On the divisibility of Fermat quotients”, Michigan Math. J., 59:2 (2010), 313–328 | DOI | MR | Zbl
[12] U. Betke, M. Henk, J. M. Wills, “Successive-minima-type inequalities”, Discrete Comput. Geom., 9:2 (1993), 165–175 | DOI | MR | Zbl
[13] M. B. Nathanson, Additive Number Theory. Inverse Problems and the Geometry of Sumsets, Grad. Texts in Math., 165, Springer, New York, 1996 | DOI | MR | Zbl
[14] S. Konyagin, C. Pomerance, “On primes recognizable in deterministic polynomial time”, The Mathematics of Paul Erdős, Vol. I, Algorithms Combin., 13, Springer-Verlag, Berlin, 176–198 | DOI | MR | Zbl