On Two-Dimensional Sums and Differences
Matematičeskie zametki, Tome 98 (2015) no. 4, pp. 570-589.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper deals with a generalization of a well-known theorem for a set $A \subseteq G$, where $G$ is an arbitrary Abelian group. According to this classical result, it follows from $|A+A| (3/2) |A|$ or $|A-A| (3/2) |A|$ that $A \subseteq H$, where $H$ is a coset with respect to some subgroup of $G$ and $|H| \le (3/2) |A|$. Consider the sets $A^2 \pm \Delta(A) \subseteq G^2$ (two-dimensional sum and difference). Here $A^2 = A \times A$ is the set of pairs of elements from $A$ and $\Delta(A)$ is the diagonal set $\Delta(A) = \{(a, a) \in G \times G \mid a \in A\}$. The main result involves the given sets and is as follows. If $|A^2 \pm \Delta(A)| 7/4|A|^2$, then $A \subseteq H + x$ for some $x \in G$ and subgroup $H \subseteq G$, where $|H| 3/2 |A|$.
Keywords: two-dimensional sum and difference, Abelian group, coset with respect to a subgroup, symmetry set, Kneser's theorem.
@article{MZM_2015_98_4_a7,
     author = {A. A. Uvakin},
     title = {On {Two-Dimensional} {Sums} and {Differences}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {570--589},
     publisher = {mathdoc},
     volume = {98},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a7/}
}
TY  - JOUR
AU  - A. A. Uvakin
TI  - On Two-Dimensional Sums and Differences
JO  - Matematičeskie zametki
PY  - 2015
SP  - 570
EP  - 589
VL  - 98
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a7/
LA  - ru
ID  - MZM_2015_98_4_a7
ER  - 
%0 Journal Article
%A A. A. Uvakin
%T On Two-Dimensional Sums and Differences
%J Matematičeskie zametki
%D 2015
%P 570-589
%V 98
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a7/
%G ru
%F MZM_2015_98_4_a7
A. A. Uvakin. On Two-Dimensional Sums and Differences. Matematičeskie zametki, Tome 98 (2015) no. 4, pp. 570-589. http://geodesic.mathdoc.fr/item/MZM_2015_98_4_a7/

[1] T. Tao, V. H. Vu, Additive Combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl

[2] M. B. Nathanson, Additive Number Theory. Inverse Problems and Geometry of Sumsets, Grad. Texts in Math., 165, Springer, New York, 1996 | DOI | MR | Zbl

[3] B. Green, I. Z. Ruzsa, “Sets with small sumset and rectification”, Bull. London Math. Soc., 38:1 (2006), 43–52 | DOI | MR | Zbl

[4] T. Sanders, “Additive structures in sumsets”, Math. Proc. Camb. Philos. Soc., 144:2 (2008), 289–316 | DOI | MR | Zbl

[5] I. D. Shkredov, “O mnozhestvakh s malym udvoeniem”, Matem. zametki, 84:6 (2008), 927–947 | DOI | MR | Zbl

[6] D. A. Moskvin, G. A. Freiman, A. A. Yudin, “Strukturnaya teoriya slozheniya mnozhestv i lokalnye predelnye teoremy dlya nezavisimykh reshetchatykh sluchainykh velichin”, TVP, 19:1 (1974), 52–62 | MR | Zbl

[7] T. Schoen, I. D. Shkredov, “Higher moments of convolutions”, J. Number Theory, 133:5 (2013), 1693–1737 | DOI | MR | Zbl

[8] M. Kneser, “Abschätzung der asymptotischen Dichte von Summenmengen”, Math. Z., 58 (1953), 459–484 | DOI | MR | Zbl

[9] T. Sanders, An Analytic Approach to a Weak Non-Abelian Kneser-Type Theorem, arXiv: 1212.0457

[10] I. V. Vyugin, I. D. Shkredov, “Ob additivnykh sdvigakh multiplikativnykh podgrupp”, Matem. sb., 203:6 (2012), 81–100 | DOI | MR | Zbl